

Rearing conditions and deformities in Atlantic salmon – what have we learned so far ?

Grete Baeverfjord and Synnøve Helland AKVAFORSK Institute of Aquaculture Research Sunndalsøra, Norway

- A persisting problem in aquaculture
 - no easy way out
- Complex problems
- Salmonids:
 - A history of organ malformations (late 1990's)
 - Predominantly skeletal defomities
 - Vertebral column, jaws, operculae

Deformities in farmed salmon

- Skeletal deformities
 - "Humpbacks" and "short
 - Jaw deformities

Soft tissue malformations

- Missing and malformed organs
- Most important: Missing septum transversum, i.e. no separation between heart and abdominal cavity
- More recently: Small and abnormally shaped hearts

- *Embryonic origin* of some of the malformations was identified through experiments on salmon eggs
- Egg incubation temperature (10.4 °C vs. control groups at 7.9°C) induced a range of deformities, including those seen in practical fish farming

Egg incubation temperature > 8°C in Atlantic salmon can induce:

Aplasia of septum transversum

Effect of temperature increase during egg incubation

(2nd experiment)

Vertebral deformities

Effect of temperature increase during egg incubation

(2nd experiment)

Long term experiment, 2001-2003: **Rearing temperatures 0-60g** *Effects on deformities in different life stages*

- Rearing experiment, freshwater
 - First feeding Feb 2001
 - Sea water transfer Apr 2002
 - Harvest June 2003
- Fish reared at 12, 14, 16 and 18°C from first feeding and to 60g size

Supported by the Norwegian Research Council

Deformed vertebrae in parr at 60g size Effect of rearing temperature 0-60g

Seawater transfer, Smolts 80-100g

Temperature induced vertebral pathology

Development of vertebrae in seawater

- 200 fish with PIT-tags were X-rayed in April 2002, at size 80-120g, just before seawater transfer
- Same individuals X-rayed again in November 2002, at average size 1,2 kg
- and were X-rayed again at harvest, in June 2003, mean weight 2,5 kg

X-rays were taken by Norwegian School of Veterinary Science

April2002 65g

nov2002 930g

P02-2 14a2

Nov 2002 1920g Kfakt 1,54

P84-2 18A1

Nutritional aspects of vertebral deformities

- No limit to the number of potential nutritional factors
- In commercial diets, mineral supply may be a limiting factor
- Phosphorus deficiency impaires bone formation
- Mineral supply (dietary level X bioavailability) is a challenge in fast growing animals
- Unpredictable dietary supply in formulated diets
 - Vegetable ingredients impairs absorption
 - Unforeseen variation in availability in fish meal

2002-2005: Deformities of vertebral column and jaw in Atlantic salmon. Effects of genetic susceptibility, mineral nutrition and production temperature

- Funded by Fiskeri- og Havbruksnæringens Forskningsfond (FHF), the industry research foundation
 - AquaGen: Supplied egg groups selected for genetic disposition
 - Ewos Innovation: Experimental feeds

The study was based on previous results, which demonstrated that....

- ... there is **genetic variation** (among family groups) in susceptibility to vertebral deformities (Gjerde et al.,2005)
- ... margins may be too narrow for some minerals in commercial diets (contents x bioavailability), and impaired mineralisation is suspected to contribute to development of vertebral deformities.
- ... high rearing temperatures induces vertebral pathology in Atlantic salmon juveniles
- ... high growth rates is known to induce inferior bone quality in poultry and swine. Maximum growth rate in Atlantic salmon at 15-16°C

Observations at 60g size:

Radiography, 20g size:

Diet with 1% P and 70 ppm Zn

Water quality in freshwater production

- Increased production of smolts (higher numbers, bigger smolts) at fewer sites
- Available water resources do not increase correspondingly
- Water flow (I/kg/min) is decreased
- Oxygen is added
- CO_2 -accumulation and low pH in tank water
- ...any effects on skeletal deformities ?

 $CO_2 (mg/l)$

Production exp.# 2

Low density, unlimited water supply, compared to High density, low water supply, oxygen added, in fish given diets with different levels of available phosphorus

Downgrading of fish at harvest in tanks with unstable conditions 22%

These tanks were characterized by

- Rearing temperature 3-60g: 16°C
- Fluctuating O₂-saturation, periods with supersaturation (>100%)
- Periods with high levels of CO_2 (>30mg/l)
- Periode with low pH (<5,8)
- A near death experience with stop in water supply and hypoxia

Unstable conditions, fluctuations, stress

- In particular, increase in fish with platyspondyly
- Vertebrae not fused, just flattened (?)
- Platyspondyly only in caudal region
- Seen only in seawater, no early signs have been detected yet

Project "Water quality- smolt quality"

O₂-supersaturation in freshwater: Effects on health condition and seawater performance

AKVAFORSK, NIVA, UMB, NIFES, UIB

- Limited water supply, oxygen added
- What happens if fish are reared in hyperoxic conditions,
 i.e. with O₂ saturation > 100% ?
- Exposure in two periods
 - From 40 to 80g size, growth under continous light
 - From 80g to smolt, through smoltification,
 6 weeks of 12D:12L, 6 weeks of continuous light
- Examination of fish after 16 weeks of communal rearing in seawater

Exposure levels:

XXXXXXXX KADDO DAD DADADHHA

Vertebral pathology

Effect of oxygen supersaturation prior to seawater transfer Radiography after 16 weeks in seawater

OKREKKKKKKKKKKKKKKKK

"Irregular vertebrae"

Effect of oxygen supersaturation prior to seawater transfer Radiography after 16 weeks in seawater

VK2004- Vannkvalitetsundersøkelsen 2004

- Benchmarking program for water quality in Norwegian hatcheries
- Since 1999
- NIVA, UMB and AKVAFORSK (from 2004)

- Skeletal deformities (2004 >)
- Fish from 21 hatcheries
- 30 juveniles per hatchery
- Radiographic examination

VK2004 **Different forms of vertebral pathology** All fish

Normal vertebrae

Single deviant vertebrae, small and dense

Fusion

Normal tail

"Ring vertebrae"

Summary, March 2005:

- Temperature is an important ethiological factor
 - In embryos
 - In juveniles
- Temperature induced changes continue to develop well into seawater rearing
- Dietary mineral supply may be a critical factor, especially when growth rates are high
- Water quality may have an impact, but the pathogenesis seems to be complex
- Vertebral deformities can be induced any time during freshwater rearing, most likely also in seawater