

FACULTEIT DIERGENEESKUNDE approved by EAEVE

UNIVERSITEIT

GEN

Comparative morphometrics, stereology and histology of sea bass *Dicentrarchus labrax* L. larvae reared in a conventional and axenic model system

A. Rekecki, K. Dierckens, P. Bossier, W. Van den Broeck

- Intensive aquaculture
- Antibiotic resistance
- •Probiotic as alternative
- •Host-microbe interactions

•Hosts tolerance to microflora, mucosal immunity, bacterial adhesion and translocation

axenic feed chain Artemia nauplii - sea bass larvae

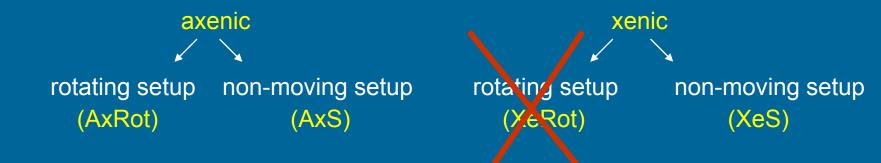
Quantitative and qualitative analysis of sea bass larvae reared in AXENIC and XENIC treatment

1.Morphometrical, stereological and histological analysis

2. Challenge test

Disinfection procedure of eggs:

- Sea bass eggs: 15000 eggs/mL
- Glutaraldehyde: 200 mg/L for 3 minutes
- Incubation: in 10 mg/L rifampicin and 10 mg/L ampicillin filtered (0.2µm), autoclaved seawater 1500 eggs/L

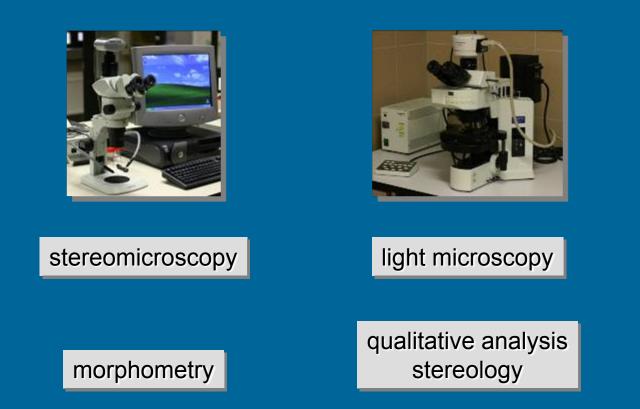

Set up for larvae culture:

- Vials of 10 mL
- 12 fish larvae/replicate
- Replicates are discarded after 1 counting
- Feeding Artemia nauplii from DAH 7 (30 nauplii /vial) each second day

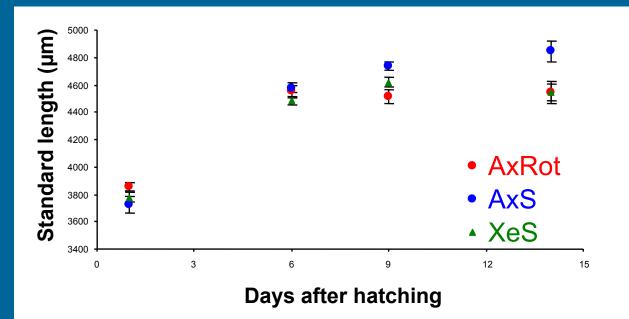
Treatments

Rotation: 4 rpm, longitudinal axis

Samples \rightarrow DAH1,


DAH6, DAH9,

DAH14,



1. Morphometrical analysis

From DAH6 onwards till the end of the experiment, AxS larvae exhibited the best growth amongst the three treatments

Standard length (mean \pm S.E.M.) of larvae on DAH1, DAH6, DAH9 and DAH14 reared in axenic rotor, axenic static and xenic static treatment (n=8-20).

2. Stereology based on Cavalieri method

Ratio between the volume of the digestive tract and total body volume based on stereology using the Cavalieri method.

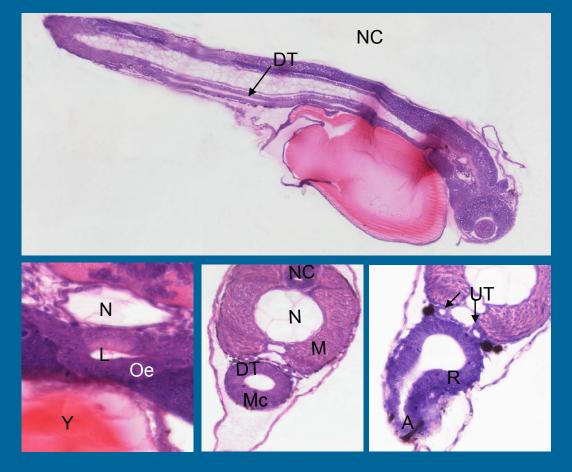
Vd/Vt

	AxRot (n=2)	AxS(n=2)	XeS(n=2)
DAH1	1.89%	1.89%	1.76%
DAH6	8.05%	7.59%	7.68%
DAH9	7.63%	8.28%	7.64%
DAH14	7.89%	10.14%	8.29%

V: volume in mm3, CE: coefficient of error, VD: volume of the digestive tract mucosa; VT: volume of the total body; VD / VT: ratio between the volume of the digestive tract and total body volume.

The AxS larva revealed the most developed digestive tract with a Vd/Vt value of 10.14 %

Faculty of Veterinary Medicine – Department of Morphology

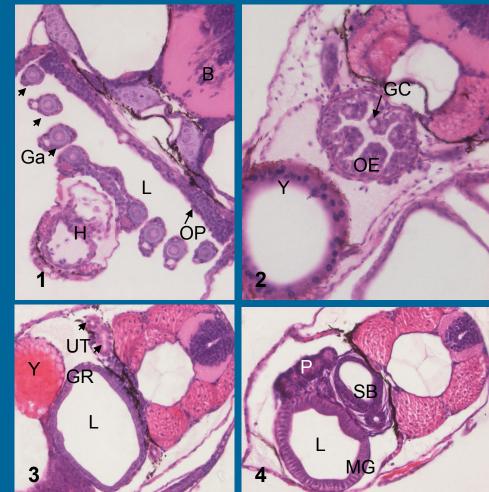

Faculty of Bioscience Engineering – Laboratory of Aquaculture & Artemia Reference Center

3. Qualitative histology (1)

<u>DAH 1</u>

- Undifferentiated straight duct
- Closed mouth and anus
- Intestinal epithelium varying in size from cubic to columnar
- Anal region (pseudo)stratified epithelium
- Mitotic cells
- No mucus production

No difference between AxRot-AxS-XeS larvae

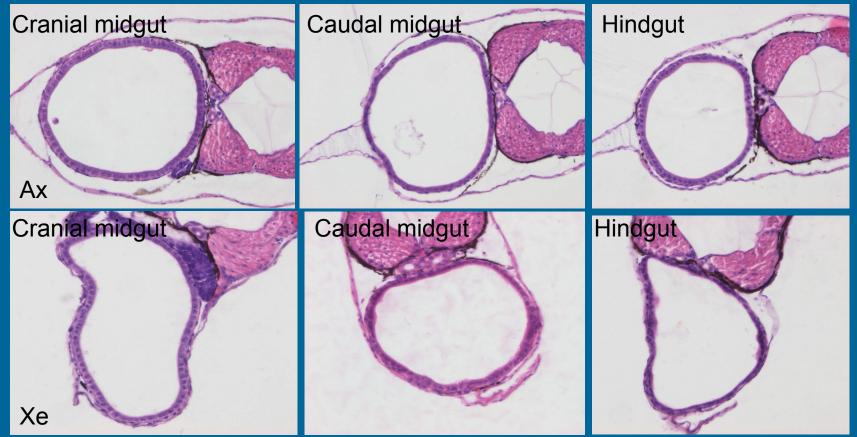


3. Qualitative histology (2)

<u>DAH 6</u>

- Differentiation of the digestive tract into:
 - 1. Oropharynx simple squamous epithelium
 - stratified epithelium
 - 2. Oesophagus (pseudo)stratified epithelium with goblet cells
 - 3. Gastric region simple cubic to columnar epithelium
 - 4. Midgut and hindgut high columnar epithelium

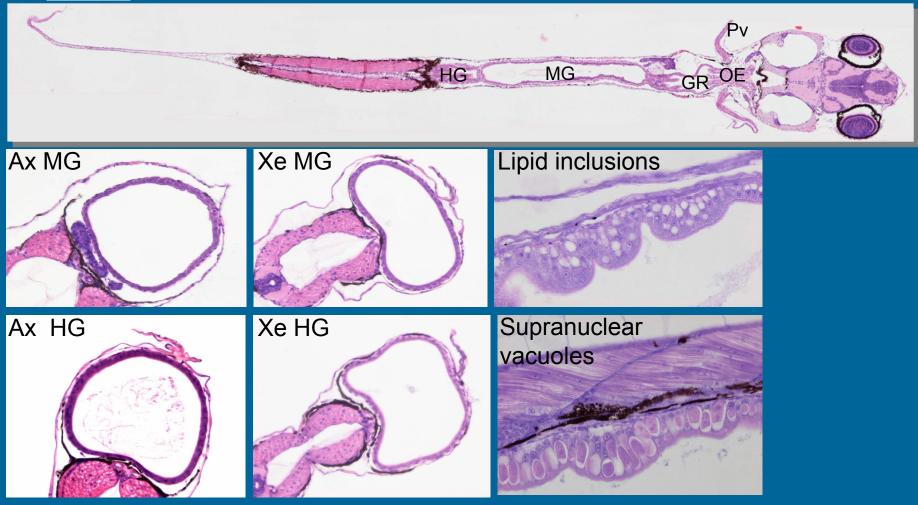
According to preliminary results no differences between AxRot-AxS-XeS larvae



3. Qualitative histology (3)

<u>DAH 9</u>

- variations in morphology of epithelial cell types among different treatments and within groups
- intestinal brush border better developed in axenic animals



3. Qualitative histology (4)

DAH 14

Conclusions

- 1. <u>Morphometry</u> Enhanced growth in axenic static larvae
- 2. <u>Stereology</u> Better developed digestive tract in axenic static larvae
- 3. <u>Histology</u>
- lower epithelium height in axenic larvaevariation in regional morphology between
 - and within treatment groups

2. Challenge test

Experimental set up:

Vials of 10 mL 12 fish larvae/replicate Replicates are discarded after 1 counting Rotation: 4 rpm, longitudinal axis

Challenge:

Listonella anguillarum HI 610 (Serovar O2a) Addition to the water at DAH 3 (10⁵ CFU/mL) and through *Artemia* (10³ CFU/Art) on DAH 7

Measurements:

Survival on DAH 5, DAH 7 and DAH 11

Survival was significantly lower from DAH 7 onwards

Survival of axenic versus challenged sea bass larvae

	Axenic	Challenge
DAH 5	91.1 ± 2.6 ^a	100.0 ± 0.0^{a}
DAH 7	88.6 ± 5.5ª	$58.6 \pm \mathbf{6.0^{b}}$
DAH 11	97.8 ± 1.5ª	$\textbf{29.1} \pm \textbf{12.3^{c}}$

Faculty of Veterinary Medicine – Department of Morphology

Faculty of Bioscience Engineering – Laboratory of Aquaculture & Artemia Reference Center

Conclusions of the challenge test

1. *Listonella anguillarum* HI 610 (serovar O2a) is pathogenic to *Dicentrarchus labrax* larvae

2. Axenic sea bass larvae can be cultured in a rotating set up with high survival till DAH 11

Future research

 Mitosis and apoptosis in the digestive tract of the sea bass larvae

 Mucin histochemistry in the digestive tract in response to pathogens and probiotics

Thank you for your attention!

