

The role of heat shock proteins as immunostimulants against the 'enteric redmouth syndrome', caused by Yersinia ruckeri

Jana Ryckaert

Promotors:

Prof. dr. ir. P. Bossier Prof. dr. F. Pasmans

Goals

Evaluation of the influence of HSPs on the course of a bacterial infection in fish

In vivo

- Testing in a model with platyfish
- Validation of results in rainbow trout

In vitro

- Role of HSPs in the immune response

Introduction: HSPs

• What?

- Highly conserved cellular proteins
- Present in all organisms
- Molecular chaperones
- Induced by exposure to stress
- Role in the immune system
 - Danger signal
 - Modulator of PAMP signaling
 - Role in antigen presentation

Introduction: Yersinia ruckeri

- Gram negative rod
- Causative agent of <u>enteric redmouth disease</u>
 - Septicemic disease
 - Host: salmonids
 - Most acute in small fish
 - Symptoms are: change in behaviour, haemorrhages, exopthalmia

Challengemodel: infection of platyfish with Y. ruckeri

- Parameters of the infection model:
 - Pathogen: Y. ruckeri 5 (serotype I)
 - Infection: i.c. injection, 30 μl PBS/fish, 10⁶ CFU/fish
 - \rightarrow Expected mortality: 60-70% after 4 5 days

Effect of HSPs on a Y. ruckeri infection in platyfish

- Testing of 2 parameters: HS and bacterial HSPs
- 3 different treatments:
 - Heat shock
 - Injection with bacterial HSPs (1 µg)
 - HS + injection with bacterial HSPs (1 µg)
- 6h later: infection with Y. ruckeri
 - Intracoelomal injection
 - 10⁶ CFU/fish, in 30 µl PBS
- Effect on survival?

Effect of HSPs on a *Y. ruckeri* infection in platyfish: results

Effect of HSPs on a *Y. ruckeri* infection in platyfish: results

- HS-HSP differs significantly from control with a hazard ratio equal to 0.503
- The comparison between HSP and control just fails to be significant (p=0.025) with a hazard ratio of HSP versus control equal to 0.547
- HS does not differ significantly from control (p=0.29)

Role of HSPs in the immune response

- Innate immune system: macrophages
 - Effect on intracellular survival
 - Effect on respiratory burst
 - Effect on NO production
- Acquired immune system
 - Effect on antibody titers

Effect on intracellular survival

- Isolation of macrophages from head kidney of rainbow trout
 - \rightarrow yield: ca 1 . 10⁷ macrophages/fish
 - \rightarrow separation on a percoll gradient (34% / 51%)
 - \rightarrow seeded in 96-well plates at 10⁶ cells / well (in 100 µl)
 - \rightarrow incubate overnight at 17°C + 5% CO₂

Gentamicin protection test

- Incubation of the macrophages with Y. ruckeri for 1 h at MOI = 10
- → Killing of extracellular Y. ruckeri with gentamicin for 1h at a concentration of 100 µg/ml
- \rightarrow Sampling at t = 0h, 6h, 16h and 24h

Effect on intracellular survival

- Effect of HS on intracellular survival
 - → Selection of optimal heat shock conditions: ∆T, duration and recovery
 - \rightarrow Gentamicin protection test

Effect on respiratory burst

• Respiratory burst:

- Rapid release of reactive oxygen species from immune cells as they come into contact with pathogens
- Occurs in phagocytes to degrade internalized particles and bacteria
- Measurement of the production of oxygen radicals with chemoluminescence assay
 - Unstable oxygen radicals go back to a lower energy level and emit photons = chemoluminescence
 - \rightarrow Luminol will be added to amplify the signal
 - \rightarrow Measurement with luminometer

Future?

 Purification of recombinant bacterial HSP DnaK

 Effect on NO production (innate immunity) and on antibody titers (acquired immunity)

 Validation of the results of the *in vivo* experiments in rainbow trout

Thank you for listening!

Any questions?