Studying host microbial interaction in larviculture: the way forward

Peter Bossier

Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Belgium

UGent R&D Aquaculture Consortium meeting, June 2008

How to study host-microbial interactions?

Gnotobiotic systems

- Mammals
- Zebrafish
- Artemia
- Brachionus
- Seabass and Cod (under development)

Gnotobiotic Artemia: GART

Processes

- Quorum sensing
- Polyhydroxybutyric acid
- Yeast-bound glucan
- Heat shock proteins

What is quorum sensing?

AHL-mediated pathway in Gram-negative bacteria

Quorum sensing and quenching in the Brachionus - Turbot food chain

Objectives

- Study the effect of AHL on turbot larval survival
- Study the effect of an N-acyl homoserine lactone (AHL) degrading bacterial mixtures (EC5) in turbot larviculture.

Experiment setup

- Egg disinfection: 0.005%
 glutaraldehyde + 50 mg l⁻¹ rifampicin
- Temperature: 16°C
- Light intensity: 14 lux
- Mild aeration for cones, no aeration for beakers

Experiment outline

<u>Aim</u>: To investigate the mode of action of AHL mixture (1 mg I⁻¹)

Exp	Treatment						
	1	2	3	4	5	6	
1	Control	AHL addition	Rifampicin	Rifampicin + AHLs			
2							
3							

Survival of turbot larvae at 5 dph (Exp 1)

- No negative effect of AHLs in the presence of antibiotic
- Effect of AHL probably through the stimulation of the virulence of opportunistic bacteria

Experiment outline

<u>Aim</u>: To compare the effect of EC3 and EC5

Exp	Treatment						
	1	2	3	4	5	6	
1	Control	AHL addition	Rifampicin	Rifampicin + AHLs			
2	Control	AHL addition	EC5 (added to water)	EC5 (added to water) + AHLs	EC5 (added to water + via rotifers)	EC5 (added to water + via rotifers) + AHLs	
3	Control	AHL addition	EC3 (added to water + via rotifers)	EC3 (added to water + via rotifers) + AHLs	EC5 (added to water + via rotifers)	EC5 (added to water + via rotifers) + AHLs	

Survival of turbot larvae at 7 dph (Exp 3)

EC5 can neutralize the negative effect of AHLs, while EC3 cannot Quorum sensing in the Artemia - Macrobrachium food chain

Effect of AHL on *Macrobrachium* larviculture

Effect of AHL on Macrobrachium larviculture: LSI

Conclusions

- QS determines virulence in vivo as demonstrated by using qs mutant
- In Artemia disruption of AI2 is sufficient to abolish virulence
- In *Brachionus* disruption of AI1 and AI2 is needed
- In larviculture of turbot and macrobrachium AHL molecules
 have a strong negative effect on survival
- Added QS molecules can be quenched by AHL degrading MC
- Is AHL mediated virulence by prevalent opportunistic pathogenic bacteria a problem in larviculture?

Heat shock proteins as

immunostimulants?

Experimental design

To test the ability of *E. coli* overproducing **DnaK** to protect *Artemia* larvae against Vibrio infection

Construction of bacteria over-producing DnaK

<i>E. coli</i> strains	Plasmids	Induction	Hsps encoded by plasmids
YS1	pblDnaK (constructed using pBAD TOPO® vectors, Invitrogen™, USA)	L-arabinose (0.5 mg/ml for 1 h)	-
YS2	pDnaK (constructed using pBAD TOPO [®] vectors, Invitrogen™ , USA)	L-arabinose (0.5 mg/ml for 4 h)	DnaK

Dnak expression of YS1 and YS2 on SDS-PAGE

Survival after Vibrio challenge

 Survival of Artemia larvae fed either induced or non-induced strain YS1 was low, results similar to those obtained with non-induced YS2

• A significant 2 to 3-fold increase in survival occurred when larvae fed with arabinose-induced YS2 were exposed to *V. campbellii*

Correlation of enhanced resistance vs. DnaK accumulation in bacteria

DnaK accumulation correlated with enhanced survival of Artemia

 Clearly, protection against vibrio challenge is improved by DnaK, although the possibility that other Hsps have this capability is not discounted

Experimental design

1. Survival after Vibrio challenge

• Feeding HS as opposed to non-HS bacteria significantly increased survival upon exposure to *V. campbellii*

Protection occurred in all HS bacterial strains employed

3. DnaK accumulation in bacteria

Western blot revealed that HS increased DnaK production by bacteria

• Quantification by ELISA demonstrated that DnaK increased from 2.0 - 2.3 fold in heated bacteria

 Higher amounts of DnaK in HS bacteria correlated with enhanced ability to promote survival of *Artemia* larvae

• Feeding gnotobiotic *Artemia* with *E. coli* over-producing different prokaryotic Hsps (DnaK-DnaJ-GrpE) increased larval resistance to *V. campbellii*

• A definitive role for DnaK was demonstrated by feeding Artemia larvae with transformed bacteria over-producing only this protein (YS2), with survival augmented approximately 3-fold after pathogenic vibrio exposure

• Immunoprobing of western blots showed that enhanced resistance to *V. campbellii* correlated with DnaK production in *E. coli*

 Exogenous Hsps possibly trigger the Artemia innate immune response, producing anti-inflammatory substances which suppress infection

GENERAL CONCLUSIONS

- Gnotobiotic systems allow to test novel strategies for disease abatement in larviculture
- Potential treatment that deserve to be tested in non-gnotobiotic environments are
 - Quorum sensing interference
 - polyhyroxybutyric acid
 - •Yeast cell wall bound glucan
 - Heat shock proteins