INTENSIVE PRODUCTION OF LOBSTER (*HOMARUS GAMMARUS*)

By Jan Ove Evjemo, K. Gruven, E. Sigstadstø, K. Johnsen, M. Andersen and Y. Olsen

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY (NTNU) SINTEF FISHERIES AND AQUACULTURE

E-mail: Jan.ove.evjemo@bio.ntnu.no Jan.o.evjemo@sintef.no

LOBSTER IS A NEW SPECIES IN MARINE AQUACULTURE

In Norway there are two hatcheries

Production of lobster juveniles for sea ranching

 Intensive 2 - 2¹/₂ year production to plate size lobster (market size (300 – 400 g))

Several small companies have license for sea ranching

• At present there is a lack of lobster juveniles

 The hatcheries are still in an early phase of their building/up scaling process

CATCHES OF LOBSTER IN NORWEGIAN WATERS

Total catches (in ton) of European lobster (*Homarus gammarus* L.) in Norway from 1923 until 1996 (data from Fiskeridirektoratets fiskeristatistikk)

Year	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Ton	30	35	45	59	52	40	40	52	50	58	62	57	54
Value in 1000 NOK	3887	4639	6400	9490	9287	7900	8100	9932	8992	10755	11780	11919	13392
NOK/kg	130	133	142	161	179	198	203	191	203	185	190	209	290

FIRST FEEDING – PELAGIC STAGES

NEWLY HATCHED LARVAE

NEWLY HATCHED LOBSTER LARVAE

CANNIBALISM IS THE MAJOR CHALLENGE RELATED TO INTENSIVE PRODUCTION OF LOBSTER

FIRST FEEDING IN A CLOSED SYSTEM

			1			
Water te Feeding Water e	emperature regime: <i>A</i> xchange: 1	: 18 °C <i>rtemia</i> and 1 00 % day ⁻¹	formulated	diets		

FIRST FEEDING AN OPEN SYSTEM (Volume 1000 L)

TEMPERATURE IS VERY IMPORTANT FOR THE GROWTH RATE

Effect of two different temperatures after 15 months growth

INDUSTRIAL SYMBIOSIS AT STATOIL - HYDRO MONGSTAD AND TJELDBERGODDEN

Possible to integrate different aquaculture species to the activity at the industry plants of Mongstad and Tjelbergodden

Waste water from the industry: temperature > 20 °C

FIRST FEEDING OF LOBSTER LARVAE

Preadult Artemia and formulated diets

□ NTNU

FIRST FEEDING OF LOBSTER LARVAE

Co-feeding (preadult Artemia and formulated diets)

Days post hatching

() SINTEF

NTNU

FIRST FEEDING OF LOBSTER LARVAE

Enriched Artemia nauplii (fed Isochrysis galbana (2 – 3 days) and emulsified lipids (24 h))

DRY WEIGHT OF LOBSTER LARVAE AT HATCHING AND POST LARVAL STAGE V

FIRST FEEDING AN OPEN SYSTEM

DIFFERENT FEEDING REGIMES

Tank 1-3 = un enriched *Artemia* + algae pasta (*Isocrysis galbana*) Tank A-D = un enriched *Artemia* + live algae (*Isocrysis galbana*)

NTNU

FIRST FEEDING AN OPEN SYSTEM

DIFFERENT FEEDING REGIMES

Tank 4-6 = unenriched Artemia + live algae (Isocrysis galbana)

Tank E-H = Artemia enriched with emulsified lipids + live algae (Isocrysis galbana)

Survival of lobster larvae fed different diets (post larval stage IV)

NTNU

Dry weight of lobster larvae fed different diets (post larval stage IV)

NTNU

LIPID AND FATTY ACID COMPOSITION IN *ARTEMIA* AND LOBSTER LARVAE (NEWLY HATCHED AND STAGE V)

ONGROWING OF LOBSTER IN RACEWAYS

CONCLUSIONS

- High survival if the lobster larvae are kept in single rooms through the live food period (85 - 91 %), compared to an open system (35 – 83 %).
- Artemia is very important as live food organism for the early stages.
 Co-feeding can be initiated at stage III IV. Overfeeding might reduce cannibalism.
- An open system is easy to handle compared to a single cell system.
 Weak individuals can initially be "removed" in an open system.
- The larval density in the first feeding units (22 2 larvae/litre) effects the survival (35 83 %).
- The content of HUFA (DHA and EPA) in Artemia is important for survival and probably also the growth.
- There are still major challenges related both to biological and technological aspects of lobster production.

• NTNU