

Advanced Solutions for animal rearing

Larvi 2009

September 8-10th

Ghent, Belgium

JRA DI ROSIGNANO SOLVAY

CLOSING THE LIFE CYCLE OF OCTOPUS VULGARIS IN CAPTIVITY

F. Lenzi, S. Lenzi and T. De Wolf

Maricoltura di Rosignano Solvay, Via P.Gigli, I-57013 Rosignano Solvay, Italy

Larvi 2009

September 8-10th

Partners in the research

- Maricoltura di Rosignano Solvay (MRS); Project coordinator and work on broodstock, live prey cultivation and larval rearing
- Laboratory of Lagoon Ecology of Orbetello; paralarval rearing with natural plankton
- Arpat Livorno; sampling campaign in the sea of wild Octopus paralarvae and associated zooplankton
- CIBM (Interuniversity centre of marine biology) Livorno: analyses and classification of the material collected in the sea
- UNIFI Dep. Biotechnology; analysis and study of the algae associated with the paralarval rearing phase
- UNIPI Department of comparative Anatomy: histological study on the PL in different development stages
- Artemia Reference Centre (ARC); study of the nutritional characteristics of the live preys
- Inve Technologies (ITECH); development of inert feeds for paralarvae and special artemia ongrowing and enrichment feeds

Larvi 2009

September 8-10th

Structure

Introduction: Taxonomy Potential of the species **Overview results paralarval rearing (literature)** State of the art **Ongrowing juveniles Broodstock maturation** Egg deposition Paralarval and juvenile rearing

Larvi 2009

September 8-10th

Structure

- Paralarval and juvenile rearing
 - Importance of the rearing volume and rearing density
 - Importance of "green water"
 - Live preys and inert feeds
 - Survival
 - **Histological studies**

Conclusions

Larvi 2009

September 8-10th

Introduction

Introduction Taxonomy

- Phylum: Mollusca
- Class: Cephalopoda
- Family: Octopodidae
- Genus: Octopus
- Species: Octopus vulgaris, Cuvier

Larvi 2009

September 8-10th

Introduction

Ideal candidate for industrial aquaculture
Easy adaptation to captivity
Extremely high growth rate
High market price
Lack of juveniles for ongrowing

Larvi 2009

September 8-10th

Ghent, Belgium

JNANO SOLVAY

Introduction Summary survival rates (Iglesias et al, 2007)

	Reference group	Live food Type	Survival (%) 54% at day 20 0.8% at day 60 31.5% at day 40		
	ICM-CSIC (Barcelona)	Zoeae and Artemia			
	IEO (Vigo)	Zoeae and Artemia			
	ICCM (Canary Island)	Zoeae and Artemia	11-27% at day 30		
	CEP (Spain)	Zoeae and Artemia	90% at day 20 3.4% at day 60		
	IFAPA (Spain)	Zoeae, Moina and Artemia	5-15% at day 35		
	YS (Japan)	Artemia + artificial	10-30% at day 30		
	FURG (Brazil)	Zoeae, copepods, mysids and Artemia	1-40% at day 40		
7					
a	Larvi 2009	September 8-10 th Ghe	nt, Belgium		

State of the art

State of the Art Ongrowing of juveniles

- Catch of juveniles from the wild
 - Period: august november
 - Feed: crab, trash fish,...
 - Natural thermoand photoperiod

for animal rearing

Larvi 2009

September 8-10th

State of the Art Maturation of Broodstock

 Separation of males and females before onset of spawning

Larvi 2009

September 8-10th

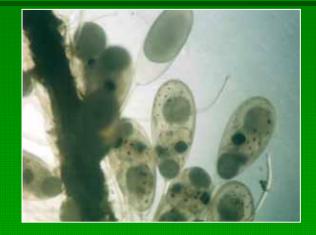
Ghent, Belgium

RA DI ROSIGNANO SOLVAY

State of the Art Maturation of Broodstock

 Transfer of females to incubation tanks and acclimation

Conditions:
Temp: 19-20°C
Photoperiod: 14L/10D


Larvi 2009

September 8-10th

State of the Art Hatching

- Hatching after incubation time of around 35 days at 20°C
- Asynchronical hatching (7-18 days)
- Mother animals die 18-30 days after hatching of the last egg

- Amount of eggs: 20,000 300,000 per female
- Egg viability:
 - Maternal care: >95%
 - No maternal care: ± 60%

September 8-10th

Ghent, Belgium

Larvi 2009

Paralarval rearing Rearing Volume

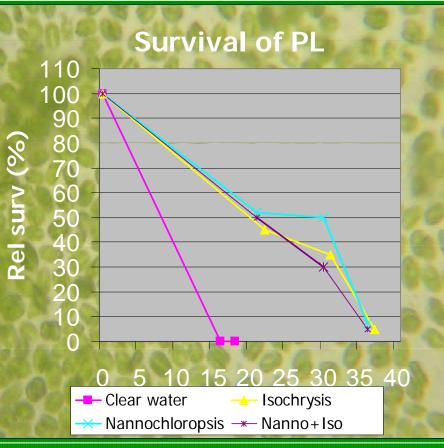
Tank volumes: 100-500-1000-6000l
 => best survival in larger volumes

Larvi 2009

September 8-10th

Paralarval rearing Densities

 Paralarval density: ranged between 3 and 35 paralarvae per l
 Initial survival (up to day 15-20): not dependant upon stocking density
 After day 20: best survival at low density (3ind.l⁻¹)


Larvi 2009

September 8-10th

Paralarval rearing Green Water

- Comparison of:
 - Clear water
 - Nannochloropsis
 - Isochrysis
 - Nanno-Iso
- Role of algae:
 - Light diffusion
 - Bacteriostatic activity?
 - Feed complement?

OSIGNANO SOLVAY Y

arsia

Larvi 2009

September 8-10th

Paralarval rearing Live prey – inert feeds

- Live preys:
 - Rotifers (Brachionus spp.)
 - Artemia nauplii, metanauplii and adults (enriched)
 - Mysids
 - Copepods
- Inert feed:
 - Moist, semi-moist, dry
 - White reddish brown

DSIGNANO SOLVAY

Larvi 2009

September 8-10th

Paralarval rearing Live prey – inert feeds

arsia

Larvi 2009

Live preys:

- Preference for large Artemia
- No better survival with addition of other wild zooplankton
- Trials ongoing comparing enriched versus non enriched artemia
- Inert feed:
 - Preference for light coloured particles
 - Ingested?

September 8-10th

for animal rearing

Major morphometric changes after day 20: armlength and nr of suckers, eye diameter

Larvi 2009

September 8-10th

2 months

Advanced Solution for animal rearing

Larvi 2009

September 8-10th

Ghent, Belgium

JRA DI ROSIGNANO SOLVAY ARIC

3 months

Advanced Solution for animal rearing

Larvi 2009

September 8-10th

4 months

Advanced Solution for animal rearing

Larvi 2009

September 8-10th

5 months

for animal rearing

Larvi 2009

September 8-10th

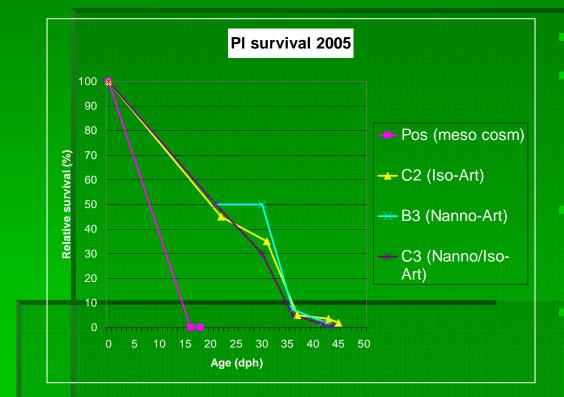
Ghent, Belgium

JRA DI ROSIGNANO SOLVAY ARIC

State of the Art First juvenile reproduced

"Gino" at 135 dph

- In 2007 we succeeded for the first time to reproduce in captivity Octopus juveniles using only on-farm produced plankton and dry diets
- This has been the first fundamental step opening the possibility of producing Octopus in aquaculture facilities



Larvi 2009

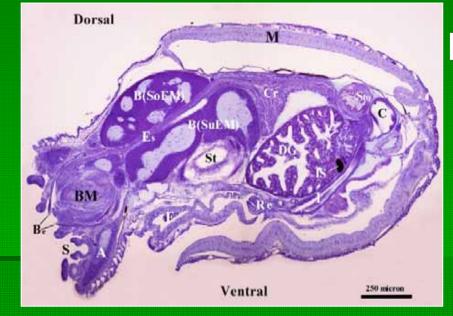
September 8-10th

State of the Art Survival

Avg at 30 dph: >35%

- Very high mortality during transition of planktonic to benthic phase
- Several thousand individuals are obtained of 45 dph
- Oldest "juvenile": 140 days

JURA DI ROSIGNANO SOLVAY S S



Larvi 2009

September 8-10th

Paralarval rearing Further studies

Histological studies

Sec. of Anatomy Dept. of Animal Productions University of Pisa

Larvi 2009

September 8-10th

Ongoing research

Comparison enriched and non-enriched artemia as live prey and first results
GSL Artemia hatched and 24h enriched with Spresso®
Further ongrowing up to bigger Artemia with ideal size of 3mm – 1cm using algae and Prolon ®
Enrichment of the treatment group during 1-3h with experimental enrichment product (INVE), rich in HUFA

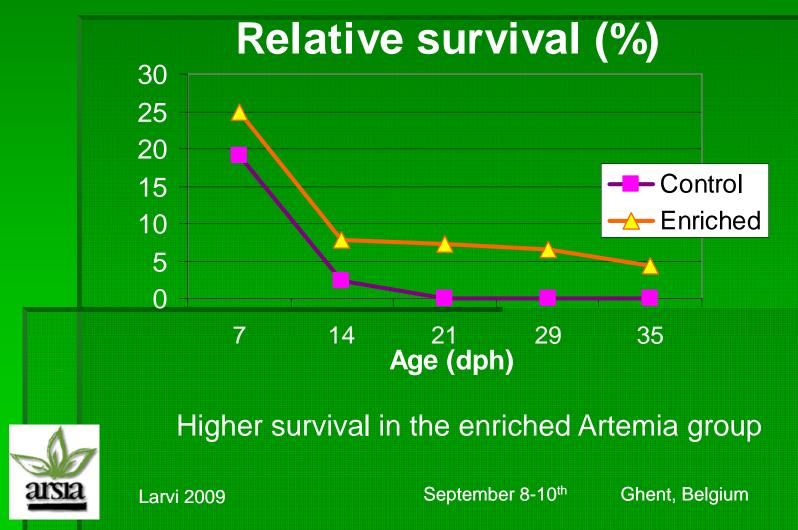
Larvi 2009

September 8-10th

Ongoing research

- Comparison enriched and non-enriched artemia as live prey and first results
 - Survival
 - Growth

DSIGNANO SOLVA



Larvi 2009

September 8-10th

Ongoing research Survival

15 YE
INVE
Advanced Solutions for animal rearing

Ongoing research Growth: morphometrics at w1 post hatch

Parameters	(mm)) Contro		ol Enriched	
	n	40		40	
Total length	mean	3,15	В	3,36	А
	SD	0,250		0,246	
Mantle Length	n	40		40	
	mean	1,55	В	1,63	А
	SD	0,149		0,170	
Head Width	n	40		40	
	mean	1,11		1,14	
	SD	0,089		0,075	
Eye Diameter	n	40		40	
	mean	0,50		0,49	
	SD	0,044		0,025	
Arm Length	n	40		40	
	mean	1,16		1,21	
	SD	0,151		0,136	
Note: means with differe 2009	nt letters differ Septembe	per P<0.0′ r 8-10 th	1 Ghe	ent, Belgiur	n

A DI ROSIGNANO SOLVAY

Conclusions

Conclusions Potential for Large Scale Production

Easy ongrowing of juveniles and maturation of broodstock in captivity
A few hundred of thousands of eggs per female can be obtained with a high fertilization rate (>95%)
High survival rates of paralarval up to 35-40 days
First juveniles have been produced

for animal rearing

Larvi 2009

September 8-10th

Conclusions Suggestions for further research

Continue paralarval rearing using "standard" aquaculture techniques
Improve growth and survival rate by adjusting the nutritional profile of *Artemia*Attention towards other components besides HUFA, such as S and Cu

for animal rearing

Larvi 2009

September 8-10th

Maricoltura di Rosignano Solvay Srl Thank you for your attention

Larvi 2009

for animal rearing

This research was co-funded by the regional agency for agricultural development in Tuscany (A.R.S.I.A.)

DSIGNANO SOI