Status and challenges in cod larval production

<u>Gunvor Øie¹</u>, Ingrid Overrein¹, Morten Alver ^{1,2}, Jo Arve Alfredsen², Elin Kjørsvik ³, Kari Attramadal³ and Yngvar Olsen³

1

¹SINTEF Fisheries and Aquaculture ²NTNU Department of Engineering Cybernetics ³NTNU Department for biology

Overview:

- Cod juvenile production
 - Production from 2000-2009
- Challenges in 2009, and bottlenecks in cod larval production
- Research on high quality juveniles at SINTEF and NTNU
 - Eggs
 - Livefeed
 - Water quality
 - New technology
- Larval production in the future

Cod hatcheries in Norway: 2001-2009

(Torskenettverket)

2001: 8 hatcheries 2007 : 13 hatcheries 2009 : 8 hatcheries

Production of juveniles (in 1000)

Juvenile production of Atlantic cod from 2001-2009

4

NTNU

Challenges in 2009

- The financial crisis
- Increased cod fishery and low prices
- Cod farming
 - High production costs
 - Variable growth and quality
 - High losses after transfer to sea cages
 - Early sexual maturation

Bottlenecks in cod larval production

Quality standards are lacking for eggs, live feed, larvae and juveniles

Production of marine larvae and juveniles

7

NTNU

() SINTEF

Egg quality criteria

- Eggs:
 - Egg size
 - Fertilization rate
 - Blastomere morphology
 - Hatching rate

Hatching success is positively correlated to normal blastomeres in cod eggs from individual cod spawning pairs

Each point corresponds to one spawning batch from one female (two different years). Hatching success is the mean from 3 replicates (Kjørsvik, Thorvik, van der Braak, Tanem and Galloway, unpublished).

NTNU

Cod egg quality during a spawning season

- from a broodstock spawning tank with multiple spawners

Spawning time during spawning season (days)

•Egg size decreased during the spawning season

•Larvae from large eggs

- higher hatcing success
- larger size at yolk-sac stage

SINTEF

- more active
- ingested more rotifers
- better survival

than larvae from smaller eggs

Kjørsvik, Lervik, Uglem, unpublished

Production of marine larvae and juveniles

NTNU

Livefeed production and enrichment

- Different microalgae and zooplankton species
- Cultivation methods and enrichment
- Microbial control
- New technology: automation and process control

Different nutritional value in *Brachionus plicatilis* (Nevada) and *Brachionus ibericus* (Cayman)

Experiment: *B.plicatilis* (Nevada) and *B.ibericus* (Cayman): -Similar cultivation conditions (8 days) -Similar feed type

Effect of rotifer size on first feeding of cod larvae

B.plicatilis (Nevada)

Production of Acartia tonsa eggs

(Financed by: Innovation Norway and cod hatcheries)

() SINTEF

NTNU

Fed to fishlarvae in critical periods

Cod larvae fed cultivated copepod or rotifers

The firstfeeding experiment: 2 tanks fed cultivated copepods 2 tanks fed rotifers

Cod larvae 17 days after hatching

(Financed by: EU project No: Q5CR-2002-72468)

Production of marine larvae and juveniles

NTNU

Water quality in cod larval production

Our strategy is to have microbial stability in the water

(Attramadal et al. unpublished)

(Finansed by CODTECH, A strategic University programme)

Effect of live algae, algae paste or clay addition to cod larval tanks

The firstfeeding experiment: 3 tanks added *Nannochloropsis* paste 3 tanks added Clay 3 tanks added live algae (*Nannochloropsis*)

	Algae paste	Clay	Live algae
Survival at day 20 post hatching ± SE	35% ± 1,65	49% ± 2,53*	22% ± 3,19
Growth rate per day from day 5 to day 20 posthaching	8,12 %	9,09 %	8,91 %
Dry weight mg at day 20 post haching ± SE	0,22 ± 0,016	0,270 ± 0,015	0,250 ± 0,014
Total colony forming units	High	Low	Low
% Vibrio of total colony forming units	High	Low	Low
Dissolved organic carbon	High	Low	High
Particular organic carbon	High	Low	High

*total mortality in one tank at day 13

Similar results obtained for halibut (Naas, pers com)

(B.Tøndel, unpublished data)

(Finansed by CODTECH, A strategic University programme)

NTNU

Cod juvenile production in the future

Thank you for your attention

Tanks to: SINTEF: Jorunn Skjermo Werner Johansen Trond Størseth

NTNU: Olav Vadstein Bjørnar Tøndel Sunnviva Kui

All the cod hatcheries in Norway

NTNU

