Current Status of *Eriocheir sinensis* Larviculture in China

L.Y. Sui, Y.X. Cheng, M. Wille, X.G. Wu, P. Sorgeloos

Tianjin University of Science and Technology, China
Gent University, Belgium
Shanghai Ocean University, China
World Distribution
Chinese Mitten Crab
Eriocheir sinensis

- Carapace 8-10 cm;
- BW 100-200 g

- Only being cultured in China
- Only favored by Chinese people
Crabs identified with laser tag
Competition for the largest size and best quality
Geographical Distribution in China

- Liaohe River population
- Yangtze River population
 - Fastest growth
 - Biggest body size
 - Most valuable
- Ou River population
Natural Resources in China

- Megalopa yield
 - Overfishing
- Dam construction
 - Adult fishery
Megalopa Production

Megalopa yield (Kg)

637,758 kg in 2005
Aquaculture Production

1993-2003 Production increase

Since 2004 Quality enhancement

500,000 mt, 2.2 billion USD increase in 2007

Annual yield (*10^3 mt)

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07
Aquaculture Operation

Broodstock management (3-4 months)

- Broodstock selection (wild or farmed)

 - Mating (13-15°C)

 - Berried female maintenance over winter

 - Ambient temp.

 - Fertilized eggs incubation

 - 15-20°C

Larval rearing (20-30 days)

- Z1

 - 21-24°C

 - Z5

 - Meagalopa temperature ↓

 - Salinity ↓

Growout (1 or 2 years)

- Juvenile crab

 - Yellow crab

 - Green crab

 - Market

- Market
Larval Rearing Techniques

- Indoor Intensive Larviculture
- Outdoor Semi-Extensive Larviculture
- Outdoor “Ecological” Larviculture
E. sinensis Larviculture Models

<table>
<thead>
<tr>
<th></th>
<th>Indoor Intensive Larviculture</th>
<th>Outdoor Semi-intensive Larviculture</th>
<th>Outdoor “Ecological” Larviculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponds</td>
<td>concrete</td>
<td>earthen</td>
<td>earthen</td>
</tr>
<tr>
<td>Size (m²)</td>
<td>12-30</td>
<td>400-700</td>
<td>10,000-15,000</td>
</tr>
<tr>
<td>Stocking density of Z1 (ind/ m³)</td>
<td>200,000-500,000</td>
<td>20,000-30,000</td>
<td>< 10,000</td>
</tr>
<tr>
<td>Diets for Z1-Z5</td>
<td>Microalgae, egg yolk, Artemia nauplii, frozen rotifer and copepod</td>
<td>Microalgae, soybean milk, Artemia nauplii</td>
<td>Microalgae, rotifer</td>
</tr>
<tr>
<td>Diet for Z5-M</td>
<td>Artemia nauplii, frozen adult Artemia and copepod</td>
<td>Artemia nauplii, frozen adult Artemia and copepod</td>
<td>Live rotifer, frozen adult Artemia and copepod</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Yes (occasionally)</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
E. sinensis Larviculture Models

<table>
<thead>
<tr>
<th></th>
<th>Indoor Intensive Larviculture</th>
<th>Outdoor Semi-intensive Larviculture</th>
<th>Outdoor “Ecological” Larviculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probiotics</td>
<td>Only in Z1-Z2</td>
<td>Yes</td>
<td>Yes (occasional)</td>
</tr>
<tr>
<td>Megalopa yield (g/ m³)</td>
<td>150-500</td>
<td>15-30</td>
<td>1-7.5</td>
</tr>
<tr>
<td>Survival to megalop (%)</td>
<td>10-15</td>
<td>5-10</td>
<td>2-4</td>
</tr>
<tr>
<td>Cost (RMB/ kg megalop)</td>
<td>600-1200</td>
<td>500-1000</td>
<td>300-500</td>
</tr>
<tr>
<td>Duration of larviculture</td>
<td>22-24 days</td>
<td>28-30 days</td>
<td>28-30 days</td>
</tr>
<tr>
<td>Water temperature (°C)</td>
<td>18-24</td>
<td>10-23</td>
<td>10-23</td>
</tr>
</tbody>
</table>
Outdoor Extensive Larviculture

Algae and rotifer culture ponds

Fertilizer ponds
Scientific Research on Mitten Crab Hatchery Techniques

(Shanghai Ocean University, China / Gent University, Belgium)
Our publications

Effect of Dietary PL on GSI/HSI During Ovary Maturation (after 3 months feeding)

- Significant lipid mobilization from hepatopancreas to ovary
- Higher dietary PL significantly improve ovary maturation
Effect of PL on Reproductive Performance

<table>
<thead>
<tr>
<th></th>
<th>Diet 1 (0% PL)</th>
<th>Diet 2 (1.2% PL)</th>
<th>Diet 3 (2.4% PL)</th>
<th>Diet 4 (3.6% PL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spawning rate (%)</td>
<td>81</td>
<td>81</td>
<td>92</td>
<td>95</td>
</tr>
<tr>
<td>No. of eggs / female (*10^4)</td>
<td>30.8 b</td>
<td>33.9 b</td>
<td>39.4 ab</td>
<td>41.1 a</td>
</tr>
<tr>
<td>Fecundity (No. of eggs / g female)</td>
<td>2957 c</td>
<td>3312 bc</td>
<td>3825 ab</td>
<td>4106 a</td>
</tr>
<tr>
<td>Egg diameter (μm)</td>
<td>351</td>
<td>343</td>
<td>345</td>
<td>342</td>
</tr>
<tr>
<td>Hatching rate (%)</td>
<td>54</td>
<td>55</td>
<td>51</td>
<td>50</td>
</tr>
</tbody>
</table>

- Egg production and fecundity increase significantly with increasing dietary PL
Effect of dietary HUFA on the HUFA Content in Tissues

- Significant correlation between dietary HUFA content and HUFA content in hepatopancreas, ovary and eggs

- Relatively higher HUFA content in ovary and eggs, indicates certain HUFA requirement during ovary maturation
Effect of Dietary n-3 HUFA on Larval Growth and Survival

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Larval stage index (LSI)</th>
<th>dry BW (μg)</th>
<th>Survival (%)</th>
<th>Cumulative stress index (CSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICES 0/-</td>
<td>5.83 (^{bc})</td>
<td>957 (^{b})</td>
<td>20.0 (^{a})</td>
<td>69 (^{b})</td>
</tr>
<tr>
<td>ICES 30/0.6</td>
<td>5.92 (^{ab})</td>
<td>1203 (^{a})</td>
<td>22.0 (^{a})</td>
<td>62 (^{ab})</td>
</tr>
<tr>
<td>ICES 50/0.6</td>
<td>5.99 (^{a})</td>
<td>1203 (^{a})</td>
<td>18.2 (^{a})</td>
<td>57 (^{a})</td>
</tr>
<tr>
<td>Control</td>
<td>5.74 (^{c})</td>
<td>973 (^{b})</td>
<td>24.7 (^{a})</td>
<td>85 (^{c})</td>
</tr>
</tbody>
</table>

- n-3 HUFA significantly improved LSI, BW and CSI, but did not affect survival
- Total HUFA level of 17 to 18 mg g\(^{-1}\) dw in rotifers and *Artemia* is optimum for larvae growth and survival
Cumulative Mortality of Megalopa

(transferred from 20 to 60 g L\(^{-1}\))

Osmotic tolerance of megalopa significantly improved with increasing dietary n-3 HUFA levels
Effect of Dietary DHA/EPA ratio on Larval Growth and Survival

<table>
<thead>
<tr>
<th>Treatment</th>
<th>LSI</th>
<th>Dry BW (ug)</th>
<th>Survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Rotifers / Artemia)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6 / 0.6</td>
<td>5.93<sup>a</sup></td>
<td>487<sup>bc</sup></td>
<td>52.3<sup>b</sup></td>
</tr>
<tr>
<td>0.6 / 4</td>
<td>5.99<sup>a</sup></td>
<td>563<sup>ab</sup></td>
<td>61.9<sup>a</sup></td>
</tr>
<tr>
<td>2 / 0.6</td>
<td>5.93<sup>a</sup></td>
<td>533<sup>ab</sup></td>
<td>67.5<sup>a</sup></td>
</tr>
<tr>
<td>2 / 4</td>
<td>5.94<sup>a</sup></td>
<td>553<sup>ab</sup></td>
<td>65.0<sup>a</sup></td>
</tr>
<tr>
<td>4 / 0.6</td>
<td>5.94<sup>a</sup></td>
<td>577<sup>ab</sup></td>
<td>65.2<sup>a</sup></td>
</tr>
<tr>
<td>4 / 4</td>
<td>5.93<sup>a</sup></td>
<td>613<sup>a</sup></td>
<td>66.5<sup>a</sup></td>
</tr>
<tr>
<td>Control</td>
<td>5.80<sup>b</sup></td>
<td>423<sup>c</sup></td>
<td>50.0<sup>b</sup></td>
</tr>
</tbody>
</table>

- Larvae continuously receiving diets with lower DHA/EPA ratio had significantly lower LSI, survival and BW.
- DHA/EPA ratio of 1.2 and 0.3 in rotifers and *Artemia* are optimal for larvae growth and survival.
Osmotic tolerance of Z5 significantly improved with increasing dietary DHA/EPA ratio.
Feeding Strategy of Zoeal Larvae

- Rotifers are ideal food for early larval stages (Z1/ Z2), Artemia should be introduced from Z3/ Z4 onwards

- Optimal rotifer feeding density for Z1 and Z2: 15 and 20 rotifers/ mL with initial Z1 stocking density of 200 ind./ mL

- Optimal Artemia density for Z3, Z4 and Z5: 3, 5 and 8/ mL with initial Z3 stocking density of 150 ind./ mL
Future Perspectives

- Nutritional enhancement of broodstock through formulated dry diets
- Formulated dry diets for zoeal larvae
- Indoor intensive hatchery technique improvement
Organizing Committee

Honorary Chairmen:
Prof. Yingjie Pan, President, Shanghai Ocean University
Prof. Jianhai Xiang, President, Chinese Crustacean Society

Conference Chairmen:
Prof. Yongxu Cheng, Shanghai Ocean University, China
Prof. Patrick Sorgeloos, Ghent University, Belgium

Co-Chairmen:
Dr. Chaoshu Zeng, James Cook University, Australia
Dr. Lewis Le Vay, University of Wales, Bangor, UK

website: www.crabconference2009.org