Federal Rural University of Pernambuco Department of Fisheries and Aquaculture Post Graduate Program in Fisheries and Aquaculture

Recent Developments on Broodstock Maturation and Reproduction of Indigenous Penaeid Species in Brazil

Dr. Sílvio Peixoto

Larvi 2009 5th Fish & Shellfish Larviculture Symposium

✓ Genus *Farfantepenaeus*

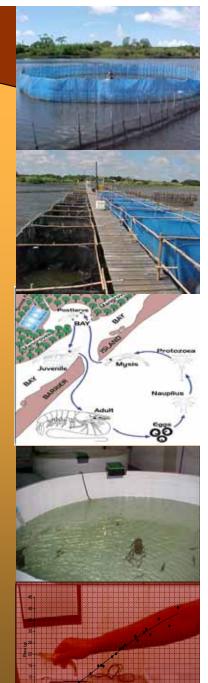
✓ 3 species with potential to aquaculture
 ✓ Distribution of F. paulensis in the Brazilian coast

✓ Genus *Farfantepenaeus*

- ✓ 3 species with potential to aquaculture
- ✓ Distribution of **F**. brasiliensis in the Brazilian coast

✓ Genus *Farfantepenaeus*

✓ 3 species with potential to aquaculture
✓ Distribution of **F. subtilis** in the Brazilian coast



✓ Advantages of indigenous species

✓ Adapted to local conditions
 ✓ Possibility of cage / pen culture
 ✓ Broodstock in the adjacent coast
 ✓ Higher price in the local market

✓ Research & development

- ✓ Reproduction and growth performance in captivity
- ✓ Different levels of technology
- ✓ Increasing interest after L. vannamei disease outbreaks

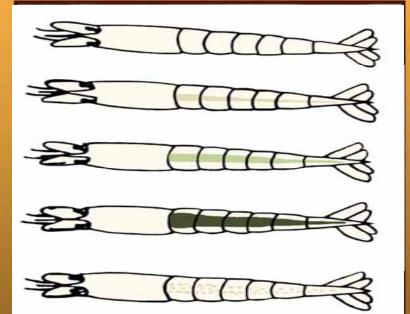
Reproductive biology

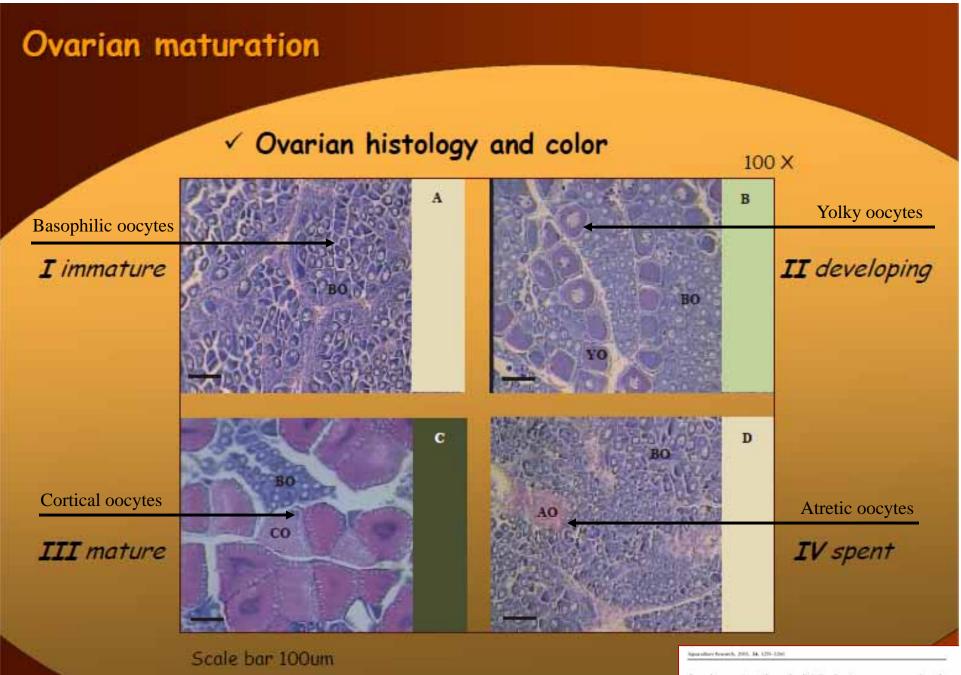
✓ Closed-thelycum species

Mating behavior
 Intermolt males
 Recently molted females

✓ Sexual maturation
 ✓ males: > 16g
 ✓ females: > 30g

✓ Ovarian development
 ✓ morphology and color (5-6 stages)
 ✓ histology (4 stages)

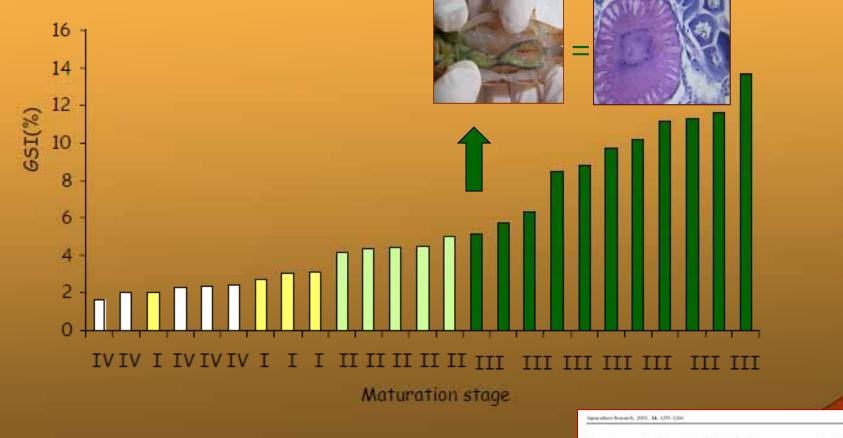



Reproductive biology

✓ Closed-thelycum species

- Mating behavior
 Intermolt males
 Recently molted females
- ✓ Sexual maturation
 ✓ males: > 16g
 ✓ females: > 30g

Ovarian development
 morphology and color (5-6 stages)
 histology (4 stages)



Ovarian maturation of wild Farfantepenaeus paulensis in relation to histological and visual changes

S Peixato, R () Cavalli, F Il Docan, Á 51 Milach & W Havielesky

Ovarian maturation

Relationship between gonadosomatic index (GSI) and maturation stage

Ovarian maturation of wild Farfantepenaeus paulensis in relation to histological and visual changes

S Perusto, R O Cavalli, F IPIncan, & M Milach & W Hanislesky

Maturation system – sand substrate

✓ *Farfantepenaeus species* = burrowing behavior

✓ Positive aspects:

- ✓ mating success
- ✓ survival / physical condition of females
- ✓ water quality

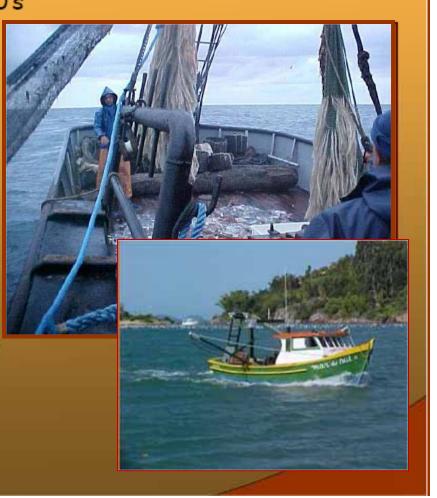
✓ Negative aspects:

- ✓ intensive labour
- ✓ sourcing mature females

Association Research, 2008, FR

Performance of Farfantepenaeus paulensis (Pérez-Farfante, 1967) broodstock in tanks with sand and hard substrate

'imia L. Nakayama¹, Silvin Petsono², Adulto Banschini^{4,3}, Hicardo B. Bobaldo² & Ronaldo O Cavadh^{4,2}

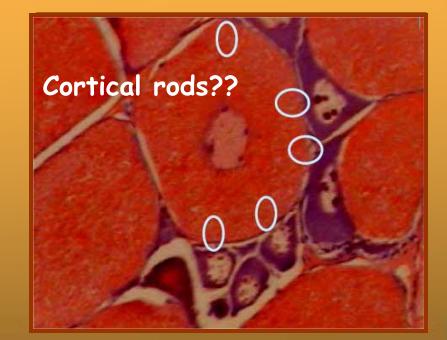

Sources for Wild broodstock

Deep-sea broodstock (40-60m)

✓ Nauplii production - since early 80's
 ✓ Large size (60 - 80g)
 ✓ Superior performance
 ✓ High cost
 ✓ Unpredictable supply

✓ Shallow-water broodstock (5-10m)

✓ Lower cost / unpredictable supply
 ✓ Smaller size (40 - 60g)
 ✓ Acceptable performance (eggs/female)
 ✓ Poor offspring quality



Shallow-water broodstock

Ovarian histology just before spawning

✓ Mature cells without cortical rods

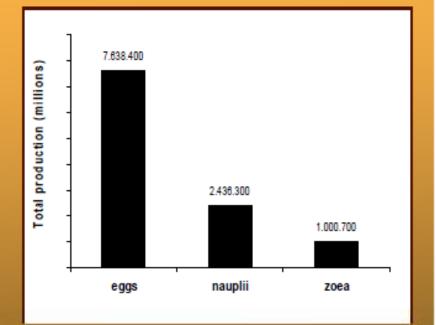
✓ Inability to reach full maturation

✓ Possible effects on offspring quality

Neptics 10(2), 149-153, 2002

10

Description of reproductive performance and ovarian histology of wild *Farfantepenaeus paulensis* from shallow waters in southern Brazil.


Peinato, S.; Cavalli, R. O.; D'Incas, F.; Wasielesky, W and Aguada, N

Shallow-water broodstock

Ovarian histology just before spawning

✓ Mature cells without cortical rods

✓ Possible effects on offspring quality

Simple method to overcome the lack of mating

✓ Basic procedures

✓ Spermatophore extrusion
 ✓ Selection of recently molted females
 ✓ Implantation of the spermatophore

✓Overall results

- ✓ One or two spermatophore / female
 ✓ Unisex or mixed maturation systems
- Spawning performance = naturally mated females

Influence of artificial insemination on the reproductive performance of Farfurtepenaros powlensis in conventional and unises: maturation systems Silve Procest, Rendo C. Carell, Darano Kammanner,

Simple method to overcome the lack of mating

✓ Basic procedures

✓ Spermatophore extrusion
 ✓ Selection of recently molted females
 ✓ Implantation of the spermatophore

✓Overall results

- One or two spermatophore / female
- Unisex or mixed maturation systems
- Spawning performance = naturally mated females

Simple method to overcome the lack of mating

✓ Basic procedures

✓ Spermatophore extrusion
✓ Selection of recently molted females
✓ Implantation of the spermatophore

✓Overall results

- One or two spermatophore / female
 Unisex or mixed maturation systems
- Spawning performance = naturally mated females

✓ Simple method to overcome the lack of mating

✓ Basic procedures

✓ Spermatophore extrusion
✓ Selection of recently molted females
✓ Implantation of the spermatophore

✓Overall results

- ✓One or two spermatophore / female
- ✓ Unisex or mixed maturation systems
- Spawning performance = naturally mated females

Domesticated broodstock

Some positive aspects:

✓ Independence from wild stocks
 ✓ Year-round supply
 ✓ Uniform size and performance
 ✓ Selective breeding

Broodstock management :

✓ Pond or raceway tanks
 ✓ Spawner = 10-16 months
 ✓ Low densities (1-5 / m2)
 ✓ Intensive management practices
 ✓ Temperature, water quality, feeding...

✓ Male quality	y			
	510	L10	516	L16
Body weight (g)	10.3 °	15.1 ^b	24.5 °	30,2 ^d
Spermatophore weight (mg)	7.7 ª	12.3 ^b	16.3 °	18.5 °
Sperm / spermatophore (x 10°)	1.23 °	0.92 ª	1.38 °	2.27 b

 \checkmark Number of sperm cells \rightarrow effect of size rather than age (S16 - L16)

Effects of age and size on reproductive performance of captive Farfantepenaeus panlensis broodstock.

Silvie Petrono⁴, Rosaldo O. Cavalli, Wilson Wasselevic, Fernande D'Iman, Datamo Krasteneman, Angela M. Milach

Domesticated broodstock – effects of age and size

✓ Female reproductive performance

	C10	110	<i>C11</i>	1.47
	510	L10	516	L16
Body weight (g)	14.7 °	25.8 ^b	36.3 °	46.7 d
Spawns recorded	3	22	30	66
Ablation to 1st spawn (days)	17.0 ^a	11.4 ^b	10.6 ^b	9.2 b
Spawning rate (spawns/female)	0.2 °	1.4 ^b	1.8 ^b	2.9 °
Eggs / spawning (x 10³)	35.8 a	86.4 °	101.5 °	147.4 ^b
Total eggs / female (x 10 ³)	7.2 °	123.6 ^b	179.2 ^b	421.6 °
Fertilization rate (%)		72.2 °	69.7 °	69.8 ª
Hatching rate (%)	-	41.5 ª	53.1 ª	64.1 ª

✓ Domesticated females with 25g = minimal size for reproductive purposes

Significant improvements on reproductive output = larger females

Effects of age and size on reproductive performance of captive Farfamepenaeus paulemis broodneck

Silivia Perinte⁴, Rosalile O. Cycalli, Witten Watedpity, Fernatele D'Decas, Dariano Krainnenasat, Angela M. Milach Domesticated X Wild broodstock - effect of source

✓Maturation trial (46g females, n=30)

✓ Reproductive performance

	Domesticated	Wild
Spawns recorded	66	61
Spawning rate	2.91	2.82
Total eggs / female	421,587	529,065
Eggs / spawning	147,426	184,371
Total eggs produced	8,993,000	12,168,500

✓ Different sources / similar size = similar reproductive performance

Comparison of reproductive output, offspring quality, ovarian hintology and fatty acid composition between similarly-sized wild and domesticated fordourpemone paulemic

Mein Peinste ^{46,0}, Wilson Wasseberg p.⁴, Raasto C. Martine¹, Angela Milach⁴, Roberta Searce⁴⁷, Renalde D. Casalli⁴⁶

Domesticated X Wild broodstock - effect of source

✓ Ovaries of wild females contained higher levels of n-3 HUFA

	Domesticated	Wild
Total lipids	3.51 ± 1.82	2.30 ± 0.58
22:5n-3	0.24 ± 0.17	0.17 ± 0.27
22:6n-3	1.49 ± 0.91	3.50 ± 2.43
Σ Saturates	16.04 ± 3.46	19.74 ± 3.11
Σ (n-6) PUFA ¹	2.95 ± 0.74	4.09 ± 2.01
Σ (n-3) HUFA ²	6.33 ± 2.61 ^b	9.12 ± 2.13 °
DHA/EPA ratio	0.38 ± 0.07	0.70 ± 0.77
(n-6)/(n-3) ratio	0.45 ± 0.08	0.44 ± 0.10

Comparison of reproductive output, offspring quality, ovarian histology and fatty acid composition between similarly-sized wild and domesticated forforepresentation poulmits

Mein Weinen ^{45,4} Wilser Weinelreite g.⁴⁵, Baarde C. Martine¹, Angela Milach⁴, Roberta Searce⁴⁶, Rosable D. Caudh⁴⁶

✓ The future success of indigenous *Farfantepenaeus* culture would depend upon increasing supplies of high quality seed

 ✓ Current efforts to close the life cycle and improve the reproduction in captivity will contribute to design an efficient breeding program

