PRESENT STATUS OF BACKYARD HATCHERY IN INDONESIA

Endhay K. Kontara¹, S. Subiyakto², I.N.A. Giri³

¹Research Center for Aquaculture, Jakarta
²Brackishwater Aquaculture Development Center, Situbondo, East Java
³Research Institute for Mariculture, Gondol, Bali
BACKYARD HATCHERY DEVELOPING IN INDONESIA

- Penaeid shrimp
 - Black tiger shrip (*Penaeus monodon*)
 - White shrimp (*Litopenaeus vannamei*)
- Grouper
 - Humpback grouper (*Cromileptes altivelis*)
 - Brown-marbled grouper (*Epinephelus fuscoguttatus*)
 - Leopard coral grouper (*Plectropormus leopardus*)
- Milkfish (*Chanos chanos*)
- Seabass (*Lates calcarifer*)
- Mud crab (*Scylla sp.*)
BACKYARD HATCHERY DEVELOPMENT

- 1980-1996: Fast development of tiger shrimp backyard hatcheries (starting in Jepara, and developing mainly in West Java, Central Java, East Java, Lampung, East Kalimantan and South Sulawesi)
- Since 1997: Number of tiger shrimp backyard hatcheries decreased dramatically due to the failures of shrimp culture caused by WSSV diseases
- 1995 to present: Development of milkfish backyard hatcheries in Gondol, Bali and Situbondo, East Java
- 1998 to present: Development of grouper backyard hatcheries in Gondol, Bali and Situbondo, East Java
- 2008 to present: Development of white shrimp backyard hatcheries in Situbondo and Tuban (East Java)
CHARACTERISTICS OF BACKYARD HATCHERY

- Simple rearing management:
 - Shrimp: Rearing nauplii to PL-10
 - Grouper: Rearing eggs to fry of 2.5 cm
 - Milkfish: Rearing eggs to a 14-16 day old fry
- Using simple tank and facilities with minimum standard
- Number of labour: 2-4 persons
- Number of larval rearing tank: 4-6 tanks
- Eggs or nauplii are purchased from big scale hatchery (nauplii center)
BACKYARD HATCHERY SEED PRODUCTION AND DISTRIBUTION

Fish/Shrimp Big Scale Hatchery (Nauplii Center) → Eggs/Nauplii → Backyard Hatchery → Fish Fry → Nursery → Grow-out

Provider of live feed (plankton, mysids)

Shrimp PL → Backyard Hatchery → Fish Fry → Nursery
IMPROVEMENT OF BACKYARD HATCHERY

- Using SPF-shrimp broodstock/nauplii
- Implementing biosecurity
- Implementing BMP’s for hatchery management
Improvement of backyard hatchery from outdoor to indoor

Shrimp backyard hatchery (SBH) outdoor

Indoor SBH with bamboo wall

Indoor SBH with cement wall
Number of Shrimp Backyard Hatchery Farmers

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of owner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tiger shrimp</td>
</tr>
<tr>
<td>Central Java</td>
<td>23</td>
</tr>
<tr>
<td>East Java</td>
<td>15</td>
</tr>
<tr>
<td>Lampung</td>
<td>67</td>
</tr>
<tr>
<td>East Kalimantan</td>
<td>19</td>
</tr>
<tr>
<td>South Sulawesi</td>
<td>14</td>
</tr>
</tbody>
</table>
Number of Fish Backyard Hatchery Farmers

<table>
<thead>
<tr>
<th>Fish</th>
<th>No. owner</th>
<th>Complete Hatchery</th>
<th>No. Broodstock tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milkfish</td>
<td>324</td>
<td>44</td>
<td>130</td>
</tr>
<tr>
<td>Grouper</td>
<td>40</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>364</td>
<td>47</td>
<td>137</td>
</tr>
</tbody>
</table>
Development of Milkfish Hatchery

Number of tanks

Year

0 1000 2000 3000 4000 5000 6000

Milkfish fry market via Denpasar Airport

Average of 53 mill/mth (Jan 2006 to Feb 2008)
Grouper Backyard Hatchery Production

No. Seed (x 1000)

- Tiger Grouper
- Humpback grouper
- Coral trout

Year

2000 2001 2002 2003 2004 2005 2006 2007

Tiger Grouper production has shown a steady increase from 2000 to 2007, with a peak in 2007. Humpback grouper production has been relatively stable, while coral trout production has remained low.
Market of grouper seed via Denpasar Air Port

Average of 718.000/mth (Jan 2006 to Feb 2008)
Number of Larval Tank

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Milkfish*</td>
<td>5.015</td>
</tr>
<tr>
<td>Grouper*</td>
<td>1.722</td>
</tr>
<tr>
<td>Total</td>
<td>6.737</td>
</tr>
</tbody>
</table>

Ratio of tank for LARVAE : ROTIFER : PHYTOPLANKTON: 1.5 : 1 : 3

Tank volume: 10 m³
Financial Analysis Tiger Shrimp

A. COST
 a) Investment (land, tanks, generator, pumps, etc. and 10% unrealized cost) IDR 126,800,00
 b) Operational cost per year (8 cycles, 4 larval rearing tanks):
 • Fixed cost (labours, electricity, maintenance) IDR 19,200,000
 • Variable cost (shrimp nauplii, Artemia cysts, artificial feed, fertilizers, chemicals, etc) IDR 40,800,000
 • Total cost (fixed cost + variable cost) IDR 60,000,000

B. PRODUCTION
 a) Seed production per cycle : 30% x 4000,000 nauplii = 1,200,000 PLs
 b) Seed production per year : 8 x 1,200,000 PLs = 9,600,000 PLs
 c) Receivable per year : 9,600,000 x IDR 12 = IDR 115,200,000

C. ECONOMIC ANALYSIS
 a) Profit & Loss : Receivable/year – Total cost/year = IDR 55,200,000
 b) Return cost ratio (R/C) : Profit/Total cost = 1.92
 c) Payback period (PP) : Investment/Gain = 2.3
 d) Break even point (BEP) : Total cost/Seed production = IDR 6.25

Note : US $ 1 = ± IDR 10,000
Financial Analysis of White Shrimp

A. COST

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Investment (land, tanks, generator, pumps, etc., and 10% unrealized cost)</td>
<td>IDR 126,800,00</td>
</tr>
<tr>
<td>b) Operational cost per year (8 cycles, 4 larval rearing tanks):</td>
<td></td>
</tr>
<tr>
<td>- Fixed cost (labours, electricity, maintenance)</td>
<td>IDR 19,200,00</td>
</tr>
<tr>
<td>- Variable cost (shrimp nauplii, Artemia cysts, artificial feed, fertilizers, chemicals, etc)</td>
<td>IDR 56,800,00</td>
</tr>
<tr>
<td>Total cost (fixed cost + variable cost)</td>
<td>IDR 76,000,000</td>
</tr>
</tbody>
</table>

B. PRODUCTION

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Seed production per cycle</td>
<td>50% x 4,000,000 nauplii = 2,000,000 PLs</td>
</tr>
<tr>
<td>b) Seed production per year</td>
<td>8 x 2,000,000 PLs = 16,000,000 PLs</td>
</tr>
<tr>
<td>c) Receivable per year</td>
<td>16,000,000 x IDR 10 = IDR 160,000,000</td>
</tr>
</tbody>
</table>

C. ECONOMIC ANALYSIS

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Profit & Loss</td>
<td>Receivable/year − Total cost/year = IDR 84,000,000</td>
</tr>
<tr>
<td>b) Return cost ratio (R/C)</td>
<td>Profit/Total cost = 2.1</td>
</tr>
<tr>
<td>c) Payback period (PP)</td>
<td>Investment/Gain = 1.5</td>
</tr>
<tr>
<td>d) Break even point (BEP)</td>
<td>Total cost/Seed production = IDR 4.75</td>
</tr>
</tbody>
</table>

Note: US $ 1 = ± IDR 10,000
Financial Analysis of Milkfish

A. **COST**
 a) Investment (land, tanks, generator, pumps, etc. and 10% unrealized cost) IDR 209,000,000
 b) Operational cost per year (4 cycles, 4 larval rearing tanks):
 - Fixed cost (labours, electricity, maintenance) IDR 7,200,000
 - Variable cost (shrimp nauplii, Artemia cysts, artificial feed, fertilizers, chemicals, etc) IDR 18,800,000
 - Total cost (fixed cost + variable cost) IDR 26,000,000

B. **PRODUCTION**
 a) Seed production per cycle : 80% x 400,000 eggs = 320,000 fish fries
 b) Seed production per year : 12 x 320,000 fish = 3,840,000 fish fries
 c) Receivable per year : 3,840,000 x IDR 10 = IDR 38,400,000

C. **ECONOMIC ANALYSIS**
 a) Profit & Loss : Receivable/year – Total cost/year = IDR 12,400,000
 b) Return cost ratio (R/C) : Profit/Total cost = 0.48
 c) Payback period (PP) : Investment/Gain = 5.44
 d) Break even point (BEP) : Total cost/Seed production = IDR 6.77

Note : US $ 1 = ± IDR 10,000
Financial Analysis of Humpback Grouper

A. COST
 a) Investment (land, tanks, generator, pumps, etc. and 10% unrealized cost) IDR 314,100,000
 b) Operational cost per year (4 cycles, 4 larval rearing tanks):
 • Fixed cost (labours, electricity, maintenance) IDR 19,700,000
 • Variable cost (shrimp nauplii, Artemia cysts, artificial feed, fertilizers, chemicals, etc) IDR 93,300,000
 • Total cost (fixed cost + variable cost) IDR 113,000,000

B. PRODUCTION
 a) Seed production per cycle: 10% x 400,000 eggs = 40,000 fish of 3 cm
 b) Seed production per year: 4 x 40,000 fish = 160,000 fish
 c) Receivable per year: 160,000 x IDR 3,750 = IDR 600,000,000

C. ECONOMIC ANALYSIS
 a) Profit & Loss: Receivable/year – Total cost/year = IDR 487,000,000
 b) Return cost ratio (R/C): Profit/Total cost = 4.3
 c) Payback period (PP): Investment/Gain = 0.64
 d) Break even point (BEP): Total cost/Seed production = IDR 706.25

Note: US $ 1 = ± IDR 10,000
Financial Analysis of Brown-marbled Grouper

A. COST
 a) Investment (land, tanks, generator, pumps, etc. and 10% unrealized cost) IDR 314,100,000
 b) Operational cost per year (4 cycles, 5 larval rearing tanks):
 • Fixed cost (labours, electricity, maintenance) IDR 21,600,000
 • Variable cost (shrimp nauplii, Artemia cysts, artificial feed, fertilizers, chemicals, etc) IDR 107,400,000
 • Total cost (fixed cost + variable cost) IDR 129,000,000

B. PRODUCTION
 a) Seed production per cycle: 10% x 400,000 eggs = 40,000 fish of 3 cm
 b) Seed production per year: 5 x 40,000 fish = 200,000 fish
 c) Receivable per year: 200,000 x IDR 1,000 = IDR 200,000,000

C. ECONOMIC ANALYSIS
 a) Profit & Loss: Receivable/year – Total cost/year = IDR 71,000,000
 b) Return cost ratio (R/C): Profit/Total cost = 0.55
 c) Payback period (PP): Investment/Gain = 4.42
 d) Break even point (BEP): Total cost/Seed production = IDR 645

Note: US $ 1 = ± IDR 10,000
Financial Analysis of Leopard Coral Grouper

A. COST
 a) Investment (land, tanks, generator, pumps, etc. and 10% unrealized cost) IDR 314,100,000
 b) Operational cost per year (4 cycles, 4 larval rearing tanks):
 • Fixed cost (labours, electricity, maintenance) IDR 19,700,000
 • Variable cost (shrimp nauplii, Artemia cysts, artificial feed, fertilizers, chemicals, etc) IDR 24,300,000
 • Total cost (fixed cost + variable cost) IDR 43,000,000

B. PRODUCTION
 a) Seed production per cycle: 2% x 400,000 eggs = 8,000 fish of 3 cm
 b) Seed production per year: 4 x 8,000 fish = 32,000 fish
 c) Receivable per year: 32,000 x IDR 4,500 = IDR 144,000,000

C. ECONOMIC ANALYSIS
 a) Profit & Loss: Receivable/year – Total cost/year = IDR 141,000,000
 b) Return cost ratio (R/C): Profit/Total cost = 3.28
 c) Payback period (PP): Investment/Gain = 2.18
 d) Break even point (BEP): Total cost/Seed production = IDR 1,343.75

Note: US $ 1 = ± IDR 10,000
Thank You

Larvi 2009, Ghent, Belgium, 7-11 September 2009