Luis Conceição¹

Ivar Rønnestad²

Larvi 2009 Sth fish it shellfish larvicublure sympositur short annexity, brotan 10 ogenatur 2007

A DYNAMIC MODEL FOR DIETARY AMINO ACIDS UTILISATION IN FISH LARVAE

CAR CONTRACTOR

¹CCMAR

Centro de Ciências do Mar, Campus de Gambelas, 8005-139 Faro, Portugal

²UiB

University of Bergen, Department of Biology, N-5020 Bergen, Norway

Background

Tracer studies :

=> Better understanding of amino acid metabolism

but interpretation limited to the comparison of a number of body compartments in a few time points, and relative (not absolute) numbers

Modelling

- holistic approach to integrate knowledge on growth and metabolism
- identify most important processes and gaps in knowledge

Dynamic model => simulate metabolism and/or growth in time

Mechanistic model => processes are defined based on the underlying biochemistry & model parameters have (as much as possible) a biological meaning

- Develop a dynamic mechanistic model that simulates AA metabolism of fish larvae.
- Assist in the interpretation of results obtained using tracer studies.

• Improve the understanding of larval digestion and absorption of dietary AA, and the postprandial AA metabolism and growth.

Data set to model

• Senegalese sole fed one meal of ¹⁴C-labelled Artemia

(20-30 min.)

1, 3, 6 or 24h incubation

Morais et al. (2004)

Model Description

Model Description

Example of equations:

Gut wall protein synthesis = KsGut * Excess FAA in gut + Basal Ks Gut wall AA catabolism = KcatGut * Excess FAA in gut + Basal AA cat

Parameters from bibliography:

• Initial size of FAA and protein pools in sole (fasted) and Artemia

Parameters to be calibrated with model:

Parameter	Unit
Basal AA Catabolism rate	ng/h
Delay onset of Digestion	min
Rate of Digestion & absorption	min ⁻¹
Gut AA catabolism rate	min ⁻¹
Gut Protein Synthesis rate	min ⁻¹
No of Artemia fed	n
Protein degradation rate	ng/h

Using Powersim Studio 7

• Lines are simulated values

• Points (and shaded area) are mean values (and 95% confidence intervals) from Morais et al. (2004)

Using Powersim Studio 7

• Lines are simulated values

 Points (and shaded area) are mean values (and 95% confidence intervals) from Morais et al. (2004)

Using Powersim Studio 7

Parameters calibrated with model:

Parameter	Unit	Mean	CV(%)
Basal AA Catabolism rate	ng/h	502.6	18.6
Delay onset of Digestion	min	0.032	3.3
Rate of Digestion & absorption	min ⁻¹	0.539	3.9
Gut AA catabolism rate	min ⁻¹	0.010	8.1
Gut Protein Synthesis rate	min ⁻¹	0.161	2.0
No of Artemia fed	n	15.0	1.1
Protein degradation rate	ng/h	25.5	0.7

After about 9 million iterations

Using Powersim Studio 7

Conclusions

- Food has a major contribution to the FAA pool composition Rates of protein synthesis and AA Catabolism show a major increase after the meal
- Peak for this postprandial metabolism occurs only 1 hour after the meal, and the rates returning to "basal" values 3 hours after the meal.
- This suggests a rapid handling of Artemia protein by larvae, and supports the need for feeding sole larvae at a high frequency (every 3-4 hours) in order to fully use its growth potential.
- Model Mechanistic nature => can be used with different AA tracers, and also for other fish species.

Future work

- Model several meals / days of feeding
- Model effects of few meals vs. continous feeding
- Test (validate) with different experiments / ages / species
- Simulate metabolism of individual AA

=> estimation of requirements

- => better understanding of AA
- Integrate AA metabolism with energetics and growth
 - => better understanding of growth process
 - => defining feeding strategies
 - => growth predictions

Larvi 2009 Sin fish & shelffish larvisatione syn

The approximation (2009)

