MODELLING THE DIGESTIBILITY OF Artemia franciscanis 'IN VITRO' DURING THE EARLY LARVAL STAGES OF MARINE FINFISH: A NOVEL APPROACH.

Ernst Thompson & Tom Hecht

Introduction

 Establishing feeding strategies to match nutritional needs of larvae is NB
 optimal growth / survival
 normal development
 Co – feeding strategies; live vs. artificial
 The absorption factor is essential in evaluating fish diets

Understanding digestibility of Artemia is NB for successful larviculture, and could contribute towards designing improved replacements diets

Introduction

Digestibility can be determined 'In vivo' or 'In vitro' Why 'In Vitro'? > Error > Wide range of biochemical techniques Relatively inexpensive / quick / simple Various studies have shown that determining the digestibility of diets in vitro can complement, and in some instances precede or substitute, in vivo digestibility techniques

Aims

 Design a 'In vitro' protocol – holistic view of digestion (predictive power of models)
 Model digestion of *Artemia* by larvae of three warm temperate finfish species
 Test the model's predictive power

Enzymes ----> Subsinate ----> Product

Protocol

Enzyme characterisation – pH & temp
 Specific enzyme activity (U/mg protein) – optimal conditions
 In vitro testing – activity and evacuation (incubation)

Methods & Materials

Source	Enzyme	Characterisation Vary pH and temp	Specific enzyme activity	In Vitro pH = 7.7 <i>Artemia</i> substrate Time: 15 – 270 min
Proteins	Alkaline proteases	Haemoglobin (l- tyrosine)	pH = 7.67	Ninhydrin (AA)
Lipids	Lipase	P – nitrophenyl meristate	pH = 8.03	Korn method (glycerol)
Carbs	Amylase	Somogyi – Nelson Starch - Reducing sugars	pH = 7.69	
n		3 x 9	8	64

Methods - Characterisation

 Altering pH and temp during substrate – enzyme incubation
 Activity at diff pH's was modelled using best supported model (AIC) – compared for species using log likelihood ratio test
 Establish optimal pH for specific enzyme activity determination

Opt. temp for enzyme activity > 50 °C – no biological sign (20 °C)

Results - Characterisation

Model selection and the predicted optimal pH for enzyme activity

Enzyme	Model	Optimal pH
Alkaline proteases	Normal plot	7.67
Lipase	Skewed normal plot	8.03
Amylase	Gamma plot	7.69

In vitro

 Analysed and modelled with GLM
 Interactions between enzymes
 Tested with *D. marginatus* (soleid)
 Contribution of exogenous enzyme based on degree of digestion (the blank) not calculation of specific enzyme activity

Results – Lipids In vitro

 Korn method - absence of glycerol
 Lack of triglycerides in Artemia
 (enrichment)
 Copepods store fats as wax esters – small amount of triglycerides for energy
 More suitable method required

Results – Degree of Digestion

GLM Models that predicts protein and carbohydrate digestion

DPD = 0.001 x time (min) + 0.592 x Alkaline protease activity – 1.323 x Amylase activity – 0.099 x *Artemia* preparation method + c (AIC = - 136.7, p<001)

DCD = $0.0008 \times \text{time} (\text{min}) - 1.632 \times \text{Amylase activity} - 0.123 \times Artemia preparation method + c (AIC - -316.1, p<0.001)$

Protein digestion

• Exogenous protease activity (14.6 %) – drop from 22 – 4 % over time Enrichment double protein digestion (not due to exogenous protease) Little protein digestion in first 150 min – free amino acids Incidental due to high exogenous amylase activity High levels of protein digestion between 150 – 210 min

Correspond to the drop in carb digestion

Results – Carb digestion

Exogenous amylase activity – 40 % (max 62%) of total activity
Enrichment very little effect
Complete carb digestion in 150 – 210 min (± 90 % of total)

Conclusion

Confirms the usefulness of in vitro studies to complement or possibly even replace in vivo digestibility studies

Acknowledgements

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

Any Questions ?