9:00-9:20, Sept. 9th, 2009

Early development of preleptocephalus larvae of the Japanese eel in captivity

: why Brachionus rotifers are not available as an initial feed for rearing eel larvae?

Takao Yoshimatsu

Laboratory of Shallow Sea Aquaculture, Graduate School of Bioresources, Mie University, JAPAN

Background

Life cycle of Anguilla japonica in western Pacific Ocean

Ingredients of larval diet for eel

Eel larvae ingesting pasty liquid-type diet

Tanaka et al.

The first captive-bred grass eel was produced in 2002.

Methods:

Fig. NRIA protocol for induced breeding

Ota, Kagawa and Tanaka.

Results: 1. Embryonic development at 21°C

Eggs were transparent, non-adhesive, pelagic, segmented and spherical in shape with wide perivitelline space Spawned egg: 0.98 mm Max. egg diameter: 1.5-16 mm (o.g 20%) Hatching: 45 h-49 h

Results: 2. Early development of preleptocephalus larvae at 25°C

Mouth opening: 3 dph Rudimental larval teeth: 4-5 dph Larval teeth move to snout: 6 dph Completion of yolk absorption: 8 dph (201.5 day-degrees)

d: 6 dph, e: 7 dph, f: 8 dph

Results: 3. Development of larval teeth at 25 °C

sku

8 dph

SEM

Larval teeth are not for catching prey.

No active feeding behavior.

10Pm X500

m m

Results: 4. Histological structure of oesophagus in preleptocephalus larvae

6 dph

8 dph

cc:cordial cavity

Onset of initial feeding at 25°C

10 dph

Hematoxylin and eosin stain

Results: 4. Histological structure of oesophagus in preleptocephalus larvae

Characteristic structure found in eel larvae: thick tissue layer in oesophageal part without mucous cells

In case of ordinary marine teleosts:

Diadromous migration

Huge difference found in oesophageal parts between ordinary teleost and eel larvae

Ordinary marine teleost larva

Eel preleptocephalus larva

i.e. no development of mucous cells and thick gullet tissue and circular muscle

Conclusion:

The embryonic and early development of the Japanese eel was studied in captivity.

Fertilized eggs were hatched out 45 to 49 hours after insemination at 21°C.

Newly hatched larvae completed yolk absorption 8 days after hatching at 201.5 day-degrees on 25°C.

Due to its characteristic feeding behavior and specific physical structure in oesophageal part, eel larvae cannot intake rotifers as an initial food item.

:This substantially makes the mass production of eel larvae difficult.

Acknowledgements

National Research Institute of Aquaculture, FRA, Japan

Dr. Hideki TANAKA Dr. Kazuharu NOMURA Dr. Shin-Kwon KIM

Dr. Tadahide KUROKAWA

