Amino acid requirements and metabolism in fish larvae and post-larvae

Luis Conceição¹, Hans Grasdalen², Ivar Rønnestad³

¹ CCMAR, University of Algarve, Faro, Portugal
² Dep. Biotechnology, NTNU, Trondheim, Norway
³ Dep. Zoology, University of Bergen, Norway
• Juvenile and adult fish have a higher protein requirement and a lower adaptability of amino acid metabolism than mammals.

• Fish larvae seem to have even less control of their AA metabolism leading to higher catabolic losses of AA, and thereby to higher AA requirements.

• Fish are probably more sensitive to diets poor in protein or with an imbalanced AA profile.
Balanced AA profile

- Fat
- Muscle
- Energy
- Faeces
- Ammonia
Ideal dietary AA profile

Larvae (% IAA)

Diet (% IAA)
Muscle Energy Fat Ammonia Faeces
• Differential absorption of individual AA?
• Selective catabolism of individual AA?

• Differential absorption of individual AA?
13C-enriched microalgae

13C-enriched Rotifers

13C-enriched fish
13C-NMR Spectroscopy

- C_{β}
- C_{α}
- C_{carboxyl}
- NH_2
- Aromatic C
- alpha C
- gamma C
- beta C

ppm
13C-NMR Spectroscopy

- Ser$_{\text{alpha}}$
- Ala$_{\text{alpha}}$
- Leu$_{\text{beta}}$
- Leu$_{\text{gamma}}$
- Ala$_{\text{beta}}$
- Glu$_{\text{beta}}$
- Methanol
\[
\left(^{13}\text{C AA}_i / ^{13}\text{C TAA} \right) / \left(\text{AA}_i / \text{TAA} \right)
\]

- **Rotifers**
- **Seabream**

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Rotifers</th>
<th>Seabream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$\left(^{13}\text{C} \ AA_i /^{13}\text{C} \ TAA \right) / (AA_i / TAA)$

- Rotifers
- Seabream

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Bioavailability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile</td>
<td>1.49</td>
</tr>
<tr>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>0.65</td>
</tr>
<tr>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td></td>
</tr>
</tbody>
</table>

Bioavailability
There are differences in the bioavailability of individual AA
different absorption efficiencies
and/or
selective catabolism of individual AA
• Selective catabolism of individual AA?

• Differential absorption of individual AA?
First-feeding herring larvae

I. Rønnestad 2000
Senegal sole post-larvae 30 DAH
Herring larvae

Day 0

Lys: Retained 69%, Oxidised 23%, Faeces 8%
Glu: Retained 16%, Oxidised 76%

Day 47

Lys: Retained 63%, Oxidised 22%, Faeces 15%
Glu: Retained 33%, Oxidised 62%, Faeces 5%
Sole post-larvae

32 DAH

% of injected labelled AA

- **Lys**: 11% Retained, 87% Oxidised, 0% Faeces
- **Arg**: 15% Retained, 82% Oxidised, 3% Faeces
- **Glu**: 65% Retained, 33% Oxidised, 2% Faeces
- **Ala**: 41% Retained, 56% Oxidised, 3% Faeces
Conclusions

• Fish larvae and post-larvae use DAA preferentially to IAA for energy production.

• Fish larvae may have a better capacity of regulating AA catabolism than thought before.

• Individual amino acids have different bioavailabilities in fish larvae and post-larvae