Biological, technical and economical feasibility of a rotifer recirculation system

G. Suantika, P. Dhert, E. Sweetman, E. O’Brien and P. Sorgeloos
Rotifers are an excellent first food for fish larvae but...
...a bottleneck for mass culture and industrial applications

- unpredictable in production
- source of contamination
- variable in quality
- high maintenance cost

Batch cultures
Recirculation system

- Rotifer culture
- Protein skimmer
- Biofilter
- Settling tank

larvi 2001 - Ghent University, Belgium - September 3-6, 2001
Recirculation system

Hydrology and food distribution

- Mesh size of the filter
- Determination of the optimal flow rate
- Determination of the feeding regime
- Improvement of the diet

Water quality

- Improvement of physical water quality parameters
- Improvement of biological water quality
- Technical improvement (more performant equipment)

Commercial applications and rotifer quality

- Upscaling for commercial application
- Effect on rotifer quality
- Cost estimation
Determination of a mesh size that retains rotifers

Mesh 30 µ
Determination of the optimal flow rate
Determinant of the feeding regime

- Batch
- CS
- CS improved feeding regime

Density (ind./ml) vs. Day

Day: 0 1 2 3 4 5 6 7
Density: 0 2000 4000 6000 8000
Improvement of the diet

\[\text{CSH} = 0.035D^{0.415V} \]

- **Batch**
- **CS**
- **CS improved feeding regime**
- **CSH**
- **CSH improved feeding regime**

Graph:
- Y-axis: density (ind./ml)
- X-axis: day (0 to 7)

Legend:
- Batch
- CS
- CS improved feeding regime
- CSH
- CSH improved feeding regime

Equation:
\[\text{CSH} = 0.035D^{0.415V} \]
Recirculation system

✓ Hydrology and food distribution
 ✓ Mesh size of the filter
 ✓ Determination of the optimal flow rate
 ✓ Determination of the feeding regime
 ✓ Improvement of the diet

Water quality

• Improvement of physical water quality
• Improvement of biological water quality
• Technical improvement
Improvement of physical water quality parameters

Effect of ozone in the recirculation system?

- Strong oxydant
- Strong disinfectant
- Coagulation/floccul.

Ozone
Protein skimmer
500%.day⁻¹
Settling tank
Biofilter
Oxygen Reduction Potential (ORP)

- culture
- protein skimmer
- culture (control treatment)

ORP (mV)

- 1 2 3 4 5 6 7 8 9 10 11 12 13

Day
Effect of ozone on the production of rotifers

- **Ozone**
- **Control**

Density (individuals ml⁻¹) vs. Day

Day: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Density: 0, 2500, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 22500, 25000, 27500, 30000, etc.
Performance of the protein skimmer

Control

Ozone
Performance of the protein skimmer

<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>Ozone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent water (ml)*</td>
<td>730</td>
<td>2100</td>
</tr>
<tr>
<td>Dry weight of SS (gr)*</td>
<td>36</td>
<td>102</td>
</tr>
<tr>
<td>SS composition (particles/ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- uneaten food</td>
<td>1.1×10^{11}</td>
<td>3.2×10^{11}</td>
</tr>
<tr>
<td>- organic wastes</td>
<td>4.1×10^{11}</td>
<td>5.7×10^{12}</td>
</tr>
</tbody>
</table>

* = average (10 days)
Physico-chemical parameters

NH$_4^+$ (mg/l)

- Ozone
- Control

Day
Physico-chemical parameters

NO$_2^-$ (mg/l)

day

ozone

control
Effect of ozone on the rotifer culture water

100 µm

flocules & debris lorica

control

100 µm

flocules

ozone
Physico-chemical parameters

NO$_3^-$ (mg/l)

- **ozone**
- **control**

Day: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Physico-chemical parameters

Absorbance (600nm)

- Ozone
- Control

Day
Bacterial counts on culture water (CFU ml⁻¹)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Ozone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marine agar</td>
<td>TCBS</td>
</tr>
<tr>
<td>Rotifer culture</td>
<td>9.0 × 10⁴</td>
<td>1.8 × 10³</td>
</tr>
<tr>
<td>Protein skimmer</td>
<td>1.0 × 10⁵</td>
<td>5.4 × 10²</td>
</tr>
</tbody>
</table>
CONCLUSIONS

Beneficial effects of ozone:

✓ improved water quality
 - better removal of particles (oxidation, flocculation)
 - lower level of ammonium, nitrite and nitrate
 ⇒ possibility to reduce the size of the biofilter

✓ improved rotifer production
 - high rotifer density
 - stable and longer culture period
 ⇒ possibility to reduce size of rotifer tanks

✓ cleaner rotifer production
Improvement of the biological water quality
Effect of substrate of the biofilter on the growth rate of rotifers

rot./ml vs day

- gravel
- CaCO₃

0 1 2 3 4 5 6 7 8 9 10 11

larvi 2001 - Ghent University, Belgium - September 3-6, 2001
Technical improvement (more performant equipment)

Floc traps Sintered metal filters
Sintered metal filters

Rotifer growth

![Graph showing rotifer growth comparison between nylon and sintered metal filters. The x-axis represents days, ranging from 0 to 9, and the y-axis represents density (ind.ml⁻¹), ranging from 0 to 8000.]
Sintered metal filters

Ammonia

![Graph showing ammonia levels over days with nylon filter and sintered metal filter comparison.](image-url)
Recirculation system

Hydrology and food distribution
- Determination of the optimal flow rate
- Determination of the feeding regime
- Improvement of the diet

Water quality
- Improvement of physical water quality parameters
- Improvement of biological water quality
- Technical improvement (more performant equipment)

Commercial applications and rotifer quality
- Upscaling for commercial application
- Effect on rotifer quality
- Cost estimation
✓ Upscaling for commercial application
Schematic outline of the upscaling system

1 = filter (30 µm)
2 = air water lift

Culture tank (1000 l)
Settling tank (100 l)
Biofilter (750 l, 350 l gravel, 100 l CaCO₃)
Protein skimmer
Protein skimmer (in series)
ozone

500%
Rotifer production in recirculation system

Density (individuals.ml⁻¹)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

larvi 2001 - Ghent University, Belgium - September 3-6, 2001
Rotifer production at 3000 ind./ml stocking density

![Graph showing rotifer production with harvesting marked on day 7. The y-axis represents density (ind.ml⁻¹) and the x-axis represents days from 0 to 27.](image-url)
Comparison of rotifers production at three different stocking densities

<table>
<thead>
<tr>
<th>Stocking Density (ind.ml⁻¹)</th>
<th>Daily Production (rotifers.day⁻¹)</th>
<th>SGR (µ)</th>
<th>Σ Water Consumption (l)</th>
<th>Σ Food (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>2.2 × 10⁹ (45%)</td>
<td>0.6 ± 0.13</td>
<td>9760</td>
<td>21</td>
</tr>
<tr>
<td>5000</td>
<td>2.1 × 10⁹ (37%)</td>
<td>0.4 ± 0.07</td>
<td>7850</td>
<td>25</td>
</tr>
<tr>
<td>7000</td>
<td>1.7 × 10⁹ (21%)</td>
<td>0.3 ± 0.06</td>
<td>4500</td>
<td>28</td>
</tr>
</tbody>
</table>
Bacterial count

<table>
<thead>
<tr>
<th>Day</th>
<th>Sample</th>
<th>MA</th>
<th>TCBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>water</td>
<td>1.9×10^5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>rotifer</td>
<td>3.5×10^3/rot.</td>
<td>3.3×10^2/rot.</td>
</tr>
<tr>
<td>7</td>
<td>culture after protein skimmer</td>
<td>3.4×10^6</td>
<td>1.6×10^5</td>
</tr>
<tr>
<td></td>
<td>after biofilter</td>
<td>1.8×10^5</td>
<td>2.2×10^4</td>
</tr>
<tr>
<td>15</td>
<td>culture</td>
<td>3.4×10^6</td>
<td>3.8×10^4</td>
</tr>
<tr>
<td></td>
<td>after protein skimmer</td>
<td>4.1×10^5</td>
<td>3.5×10^3</td>
</tr>
<tr>
<td></td>
<td>after biofilter</td>
<td>4.9×10^5</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>culture</td>
<td>2.3×10^5</td>
<td>3.0×10^4</td>
</tr>
<tr>
<td></td>
<td>after protein skimmer</td>
<td>2.8×10^5</td>
<td>5.5×10^3</td>
</tr>
<tr>
<td></td>
<td>after biofilter</td>
<td>3.5×10^4</td>
<td>0</td>
</tr>
</tbody>
</table>
Changes in bacterial communities in rotifer cultures (DGGE)

recirculation technique

Week 1 Week 2 Week 3 Week 4

larvi 2001 - Ghent University, Belgium - September 3-6, 2001
Effect on rotifer quality

Rotifer size (µ)

- Week 1: 170 µ
- Week 2: 200 µ
- Week 3: 190 µ
- Week 4: 180 µ
✓ Effect on rotifer quality

Formulation of an experimental DHA recirculation diet

Nutritional content of rotifers (mg.g⁻¹)

- DHA : 10
- EPA : 5
- DHA/EPA : 2
- Σ(n-3) HUFA : 19
Cost estimation

Batch System
- Feed: 12.5%
- Labour: 14.8%
- Depreciation: 11%
- Others: 6.5%
- Investment cost: 55.2%
- Total cost: 94,396 €uro

Recirculation System
- Feed: 20.7%
- Labour: 9%
- Depreciation: 13.3%
- Others: 5%
- Investment cost: 52%
- Total cost: 54,000 €uro
Conclusions

• Reliable daily production of 2.0×10^9 rotifers harvested from the recirculation system during long term culture period (3 weeks)

• More efficient production obtained at 3000 ind./ml stocking density due to a better food conversion rate and higher daily rotifer production

• Stable microflora during the culture period with control on Vibrio’s

• Stable nutritional content of harvested rotifers, possibility to enrich rotifers with DHA during the rearing period no detrimental/oxydation effect of ozone

• Cost efficient production method